15.4.1

15.4: Green’s Theorem

Definition: A curve C given by r(t) = x(t) i+ y(t) j, a<t <b, is said to be simple if
r(c) #r(d) forevery c,d in [a,b].
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That is, a simple curve is a curve that does not intersect itself between its endpoints.

A connected region in R” is said to be simply connected if every closed curve in R encloses
only points that are in R.

That is, a simply connected region does not have holes. (Also, it must be connected—it cannot
consist of multiple disjoint pieces.) <l T\'?S conmadRd —> ¢ OVW\JLOXM o)
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Green’s Theorem:

Suppose R is a simply connected region in R’ with a piecewise smooth boundary C, oriented
counterclockwise. coudrc e wies =7 '\70%7\“\\1&\\% ocanded

(That is, the region R lies to the left as C is traversed exactly once.)

Suppose F(x,y)=Mi+ N jis a vector tield with M and N having continuous first partial
derivatives in an open region containing R. Then,

N oM
J'CFodr=.[Cde+NdyzLj(&—E)dA

Note on Notation: An integral with a circle indicates that the line integral is evaluated over a
simple closed curve. Sometimes an arrow is used to indicate the orientation.

cﬁchx+ Ndy or gSCde+Ndy
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15.4.2

Example 1: Evaluate J.C x* dx + xy dy , where C is the boundary of the triangle with vertices
(0,0), (1,0), and (0,1), traversed counterclockwise.
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15.4.3

Example 2: Evaluate J.C (y—x*)dx+(2x—y*)dy, where C is the boundary of the region lying

inside the semicircle y =+/25—x" and outside the semicircle y =+/9—X’ , traversed
counterclockwise (positively oriented).

Example 3: Evaluate J.C (y+e)dx+ (x> +cos y*) dy, where C is the positively oriented

boundary of the region enclosed by the parabolas y = x> and x=y’.

Example 4:  Evaluate the work done by the force field F(X, y) = xyi+ (X’ + y*)j on a particle
traversing (in a counterclockwise direction) the boundary of the square with vertices (0,0),
(2,0), (2.2) and (0,2).



15.4.4

Using Green’s Theorem to find area:

Sometimes the double integral over an area is easier to calculate than the line integral around the
boundary. Other times, the reverse is true.

We can choose M and N strategically to come up with a formula for area:
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Theorem: Line Integral for Area

Suppose R is a simply connected region in R’ with a piecewise smooth boundary C, oriented
counterclockwise. Then the area of R is

1
Area = EJC xdy — ydx.

Example 5:  Find the area of the triangle with vertices (1,2), (7,3), and (6,1).
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15.4.5
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Example 6: Find the area of the ellipse X_+y_2 1. ﬁ \"!\<
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Extending Green’s Theorem to a region with a hole: Y &\og\zﬂ \ A?f, d\\t,~
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Example 7: Evaluate I (y=3x%)dx+(2x—sin y)dy, where C is the bopindary of the region
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lying between the circles X +Yy’ =4 and X’ +Yy’ =1. A_ o\b 1 0“
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