15.4: Green's Theorem

<u>Definition</u>: A curve C given by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$, $a \le t \le b$, is said to be *simple* if $\mathbf{r}(c) \ne \mathbf{r}(d)$ for every c, d in [a,b]. $\mathbf{r}(c) \ne \mathbf{r}(d)$ That is, a *simple curve* is a curve that does not intersect itself between its endpoints.

A connected region in \mathbb{R}^2 is said to be *simply connected* if every closed curve in *R* encloses only points that are in *R*.

That is, a simply connected region does not have holes. (Also, it must be connected—it cannot consist of multiple disjoint pieces.) $simply connected \implies connected$

Suppose R is a simply connected region in \mathbb{R}^2 with a piecewise smooth boundary C, oriented counterclockwise.

(That is, the region R lies to the left as C is traversed exactly once.)

Suppose $\mathbf{F}(x, y) = M \mathbf{i} + N \mathbf{j}$ is a vector field with *M* and *N* having continuous first partial derivatives in an open region containing *R*. Then,

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C M \, dx + N \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA \, .$$

<u>Note on Notation</u>: An integral with a circle indicates that the line integral is evaluated over a simple closed curve. Sometimes an arrow is used to indicate the orientation.

$$\oint_{C} M \, dx + N \, dy \quad \text{or} \quad \oint_{C} M \, dx + N \, dy$$

$$\oint_{C} + N \, dx + N \, dy \quad \delta_{C} \quad f_{C} + N \, dy$$

Example 2: Evaluate $\int_C (y - x^2) dx + (2x - y^2) dy$, where *C* is the boundary of the region lying inside the semicircle $y = \sqrt{25 - x^2}$ and outside the semicircle $y = \sqrt{9 - x^2}$, traversed counterclockwise (positively oriented).

Example 3: Evaluate $\int_C (y + e^{\sqrt{x}}) dx + (x^2 + \cos y^2) dy$, where *C* is the positively oriented boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$.

Example 4: Evaluate the work done by the force field $\mathbf{F}(x, y) = xy\mathbf{i} + (x^2 + y^2)\mathbf{j}$ on a particle traversing (in a counterclockwise direction) the boundary of the square with vertices (0,0), (2,0), (2,2) and (0,2).

Using Green's Theorem to find area:

Sometimes the double integral over an area is easier to calculate than the line integral around the boundary. Other times, the reverse is true.

We can choose *M* and *N* strategically to come up with a formula for area:

We can choose M and N strategically to come up with a formula for area: To find avea, we want $\int_{V_R} \int (dA) = 0$ would be don't, M and N such that $\frac{\partial N}{\partial \chi} - \frac{\partial M}{\partial y} = 1$. Lots if ways to don't, ay: $-\frac{1}{2}, \frac{\partial N}{\partial \chi} = \frac{1}{2}$ $M = -\frac{1}{2}y, N = \frac{1}{2}x$ $M = -\frac{1}{2}y, N = \frac{1}{2}x$ me way. Theorem: Line Integral for Area Suppose *R* is a simply connected region in \mathbb{R}^2 with a piecewise smooth boundary *C*, oriented counterclockwise. Then the area of *R* is

Area =
$$\frac{1}{2} \int_C x dy - y dx$$

Find the area of the triangle with vertices (1,2), (7,3), and (6,1). Example 5:

