11.7: Cylindrical and Spherical Coordinates

Cylindrical coordinates:

Cylindrical coordinates extend the polar coordinate system into \mathbb{R}^3 .

P(x, y, z) —	$\rightarrow P'(r,\theta,z)$
Rectangular	Cylindrical

In a cylindrical coordinate system, a point *P* in \mathbb{R}^3 is represented by an ordered triple (r, θ, z) .

- 1. (r, θ) is a polar representation of the projection of *P* in the *xy*-plane.
- 2. *z* has the same meaning as in rectangular coordinates.

<u>Note</u>: Cylindrical coordinates are especially useful for representing surfaces for which the *z*-axis is the axis of symmetry (cylindrical surfaces and surfaces of revolution).

Example 1: Convert the point with rectangular coordinates $(-2\sqrt{2}, 2\sqrt{2}, 2)$ to cylindrical coordinates. $\gamma = -2\sqrt{2}, \quad \gamma = 2\sqrt{2}, \quad Z = 2$ $4\alpha \cdot \Theta = \frac{4}{\chi} = \frac{2\sqrt{2}}{-2\sqrt{2}} = -1 \implies \Theta = \frac{3\pi}{4}, \quad -\frac{\pi}{4}, \quad \frac{7\pi}{4}, \quad \cdots$ $\chi^2 + \gamma^2 = \chi^2 \implies \chi^2 = (-2\sqrt{2})^2 + (2\sqrt{2})^2$ $= 4 \cdot 2 + 4 \cdot 2$ $= 1/6 \cdot 50 \ r = \pm 4$ $\int (r, \Theta, Z) = (4, \frac{3\pi}{4}, 2) \int$ **Example 2:** Convert the point with cylindrical coordinates $\left(3, \frac{\pi}{3}, -5\right)$ to rectangular coordinates. $\gamma = 3, \quad \theta = \frac{\pi}{3}$ $\gamma = r \cos \theta = 3 \cos \frac{\pi}{3} = 3(\frac{1}{2}) = \frac{3}{2}$ $\gamma = r \sin \theta = 3 \sin \frac{\pi}{3} = 3(\frac{5\pi}{2}) = \frac{3\sqrt{\pi}}{2}$

Example 3: Convert the equation $z = x^2 + y^2$ in rectangular coordinates into an equation in cylindrical coordinates.

Example 4: Convert the equation $z = x^2 - y^2$ in rectangular coordinates into an equation in cylindrical coordinates.

$$Z = \chi^{2} - \eta^{2}$$

$$X = r\cos \theta, \eta = r\sin \theta \Rightarrow Z = (r\cos \theta)^{2} - (r\sin \theta)^{2}$$

$$R = \eta^{2} (\cos^{2}\theta - r^{2} \sin^{2}\theta)$$

$$Z = r^{2} (\cos^{2}\theta - \sin^{2}\theta)$$

Example 5: Convert the equation $4 = x^2 + y^2$ in rectangular coordinates into an equation in cylindrical coordinates.

Example 6: Convert the equation $x^2 + y^2 = z^2$ in rectangular coordinates into an equation in cylindrical coordinates. $y^2 \in z^2$ $z = \pm y$

Example 7: Convert the equation $r = 2\cos\theta$ in cylindrical coordinates into an equation in rectangular coordinates.

In a spherical coordinate system, a point *P* in \mathbb{R}^3 is represented by an ordered triple (ρ, θ, ϕ) .

- 1. ρ is the distance between *P* and the origin, $\rho \ge 0$.
- 2. θ is the angle between the positive *x*-axis and the projection of \overrightarrow{OP} in the *xy*-plane (same θ as in cylindrical coordinates).
- 3. ϕ is the angle between the positive *z*-axis and \overline{OP} ($0 \le \phi \le \pi$)

Note: Spherical coordinates are especially useful for surfaces that are symmetric about a point, or center. $\wedge \neq = 2$

Converting between rectangular and spherical coordinate systems:

$x = \rho \sin \phi \cos \theta$	$y = \rho \sin \phi \sin \theta$	$z = \rho \cos \phi$
$x^2 + y^2 + z^2 = \rho^2$	$\tan\theta = \frac{y}{x}$	$\phi = \cos^{-1}\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$

Converting between cylindrical and spherical coordinate systems $r \ge 0$:			
$ r^{2} = \rho^{2} \sin^{2} \phi $	$\theta = \theta$	$z = \rho \cos \phi$	
$\rho = \sqrt{r^2 + z^2}$	$\theta = \theta$	$\phi = \cos^{-1}\left(\frac{z}{\sqrt{r^2 + z^2}}\right)$	

Example 8: Convert the equation $\rho = c$ (*c* a constant) in spherical coordinates into an equation in rectangular coordinates.

Example 9: Convert the equation $\phi = c$, $0 < c < \frac{\pi}{2}$, in spherical coordinates into an equation

Example 10: Convert the equation $x^2 + y^2 - 3z^2 = 0$ to spherical coordinates from rectangular coordinates.

Example 13: Convert the point that is represented by (1, 2, 3) in rectangular coordinates to cylindrical and spherical coordinates.

Homework QS
11.6 # 21
$$\chi^2 - \chi^2 + Z = 0 \implies Z = \chi^2 - \chi^2$$

