3.4: Measures of Position and Outliers

The *z*-score:

The *z*-score for a data point represents the number of standard deviations that lie between the data point and the mean. The z-score is sometimes known as the standardized value, and it allows us to compare data points from different distributions.

You can think of the z-score as representing the "distance from the mean," with distance measured in standard deviations. A positive z-score indicates the data point lies above the mean; a negative *z*-score indicates the data point lies below the mean.

Therefore, for bell-shaped distributions,

- about 68% of the data points have z-scores between -1 and 1;
- about 95.7% of the data points have *z*-scores between -2 and 2;
- about 99% of the data points have *z*-scores between -3 and 3.

```
39.7%
```

- at least 75% of the data points have *z*-scores between -2 and 2;
- at least 88.9% of the data points have *z*-scores between -3 and 3.

The *z*-score:

The *z*-score for a value *x* is

$$z = \frac{x - \mu}{\sigma}$$
 (for a population), or

 $z = \frac{x - \overline{x}}{r}$ (for a sample), where μ and σ are the population mean and standard deviation, or \overline{x} and s are the sample mean and standard deviation.

Note: The z-score is unitless. All distributions of z-scores have mean 0 and standard deviation 1.

Suppose a data set has mean 52 and standard deviation 8. Find the z-scores for the Example 1: scores 44, 64, 38, and 52.

$$Z_{44} = \frac{x - \overline{x}}{4} = \frac{44 - 52}{8} = -1$$
 Note that $Z_{60} = 1$
(1 st. dw. above the
(1 st. dw. above the
mean

$$Z_{64} = \frac{64 - 52}{9} = \frac{12}{8} = 1.5$$
 (so this is 1.5 std devs above the
mean)

$$Z_{52} = \frac{52 - 52}{9} = 0$$
 (E2 is 0 std devs from the mean)

$$\frac{7}{238} = \frac{38-52}{8} = \frac{-14}{8} = -1\frac{3}{4} = -1.75$$

what value has a Z-score of -2?
$$\frac{7}{2}-2\lambda = 52-2(8) = 52-16 = 36$$

Example 2: In 2014, the mean of the ACT mathematics test was 20.9 and the standard deviation was 5.3. In the same year, the mean of the SAT mathematics test was 513 and the standard deviation was 120. Suppose Tamara, a high school student, received a score of 24 on the ACT mathematics test, and 600 on the SAT mathematics test. On which test did she perform better?

(ACT data from the National Center for Education Statistics, <u>https://nces.ed.gov/programs/digest/d14/tables/dt14_226.50.asp?current=yes</u>; SAT data from the College Board, <u>https://www.collegeboard.org/program-results/2014/sat</u>)

Tamarats Z-scone of the ACT math; $Z_{ACT} = \frac{X-M}{\sigma} = \frac{24-20.9}{5.3} \approx 0.5849$ Her Z-score as SAT math $Z_{SAT} = \frac{X-M}{\sigma} = \frac{600-513}{120} = 0.725 \quad (better on better on better on better on better on better on better on the SAT)$

The <u>kth percentile</u>, denoted P_k , of a data set is the value such that k % of the data points are less than or equal to that value. The <u>percentile rank</u> of a score is the percent of scores equal to or below that score.

For example, a value is known as the 85th percentile if 85% of the data points are less than or equal to that score.

Example 3: Here are the 50 randomly generated scores from Example 8 in Section 3.2. Estimate the 70^{th} percentile, 80^{th} percentile and the 90^{th} percentile.

 Example 2: In 2014, the mean of the ACT mathematics test was 20.9 and the standard deviation was 5.3. In the same year, the mean of the SAT mathematics test was 513 and the standard deviation was 120. Suppose Tamara, a high school student, received a score of 24 on the ACT mathematics test, and 600 on the SAT mathematics test. On which test did she perform better?

(ACT data from the National Center for Education Statistics,

https://nces.ed.gov/programs/digest/d14/tables/dt14_226.50.asp?current=yes; SAT data from the College Board, https://www.collegeboard.org/program-results/2014/sat)

(See next page for Example 9-Finding quartiles for this data Set)

Percentiles:

The <u>kth percentile</u>, denoted P_k , of a data set is the value such that k % of the data points are less than or equal to that value. The <u>percentile rank</u> of a score is the percent of scores equal to or below that score.

For example, a value is known as the 85th percentile if 85% of the data points are less than or equal to that score. 70th percentile: 63.15417, 80th percentile: 63.79043, 90th percentile: 67.85567

Example 3: Here are the 50 randomly generated scores from Example 8 in Section 3.2 Estimate the 70th percentile, 80th percentile and the 90th percentile.

		E and the							
37.48295 53.07996 54.94143 57.	29676 60.95421 63.16013	66.48368 goth percentile							
44.16628 53.20456 55.31494 57.	37955 61.43636 63.3329	67.79641							
47.40146 54.25092 55.90412 58.	99277 61.91373 63.39574	67.85567							
		67.85567 68.12883 goth percentile							
51.77209 54.42467 56.64306 59.	74812 62.52829 63.79043	68.23415							
	.00459 62.58302 63.93691	70.72309							
53.05055 54.91449 57.00922 60	.59386 63.15417 66.44211	70.72309 73.3014 87.41814 Bottom 90%							
Bottom 70%		i is (a.g.) of scores							

Oth perceptile = 0.70 (50)=35 scores. So separate these from the top 15 (3070) of scores, goth percentile = 0.80(50)=40 scores. Separate these from the top 10 (20%) of scores. goth percentile = 0.9(50)=45 scores. Separate these from the top 5 (top 10%).

Example 2: In 2014, the mean of the ACT mathematics test was 20.9 and the standard deviation was 5.3. In the same year, the mean of the SAT mathematics test was 513 and the standard deviation was 120. Suppose Tamara, a high school student, received a score of 24 on the ACT mathematics test, and 600 on the SAT mathematics test. On which test did she perform better?

(ACT data from the National Center for Education Statistics, <u>https://nces.ed.gov/programs/digest/d14/tables/dt14_226.50.asp?current=yes;</u> SAT data from the College Board, <u>https://www.collegeboard.org/program-results/2014/sat</u>)

 $\begin{array}{c} F_{1},2,\cdots,r_{n} \\ Q_{3} - Q_{1} = (63,396 - 5 + 8.878 = 8.548) \\ Q_{3} - Q_{1} = (63,396 - 5 + 8.78 = 8.548) \\ Q_{3} - Q_{1} = (63,396 - 5 + 8.78 - 12.777 = 42.101) \\ Q_{3} - Q_{1} = (1.5) (Q_{1}, 5.18) = 12.7777 \\ Q_{3} - Q_{1} = (1.5) (Q_{1}, 2.18) = 5 + 8.78 - 12.777 = 42.101 \\ Q_{3} - Q_{1} = (1.5) (Q_{1}, 2.18) = 5 + 8.878 - 12.777 = 42.101 \\ Q_{3} - Q_{1} = (1.5) (Q_{1}, 2.18) = 5 + 8.878 - 12.777 = 42.101 \\ Q_{3} - Q_{1} = (1.5) (Q_{1}, 2.18) = 5 + 8.878 - 12.777 = 42.101 \\ Q_{3} - Q_{1} = (1.5) (Q_{1}, 2.18) = 5 + 8.878 - 12.777 = 42.101 \\ Q_{3} - Q_{1} = (1.5) (Q_{1}, 2.18) = 5 + 8.878 - 12.777 = 42.101 \\ Q_{3} - Q_{1} = (1.5) (Q_{1}, 2.18) = 5 + 8.878 - 12.777 = 76.173 \\ Q_{3} - Q_{3} = (1.5) (Q_{1}, 2.18) = (1.5) (Q_{1}, 2.18) = (1.5) (Q_{1}, 2.18) \\ Q_{3} = (1.5) (Q_{1}, 2.18) = (1.5) (Q_{1}, 2.18) \\ Q_{3} = (1.5) (Q_{1}, 2.18) = (1.5) (Q_{1}, 2.18) \\ Q_{3} = (1.5) (Q_{1}, 2.18) = (1.5) (Q_{1}, 2.18) \\ Q_{3} = (1.5) (Q_{1}, 2.18) \\ Q$ than or equal to that value. The percentile rank of a score is the percent of scores equal to or below that score. For example, a value is known as the 85th percentile if 85% of the data points are less than or equal to that score.

Example 3: Here are the 50 randomly generated scores from Example 8 in Section 3.2. Estimate the 70^{th} percentile, 80^{th} percentile and the 90^{th} percentile.

10							14.		
	37.48295	53.07996	54.94143	57.29676	60.95421	63.16013	66.48368		
	44.16628	53.20456	55.31494	57.37955	61.43636	63.3329	67.79641		
	47.40146	54.25092	55.90412	58.99277	61.91373	63.39574	67.85567		
	50.54246	54.41687	56.48669	59.10063	62.14886	63.61741	68.12883		
	51.77209	54.42467	56.64306	59.74812	62.52829	63.79043	68.23415		
	52.06366	54.87849	56.84053	60.00459	62.58302	63.93691	70.72309		
	53.05055	54.91449	57.00922	60.59386	63.15417	66.44211	73.3014		
	6						87.41814		
	Q	N			-	T			
Q2= M: Botween 25th and 26th data point: Bottom half has 25 scores. So the Q1 is the 13th score. Similarly, Q3 is the 13th score in the top that of scores									
all half has 25 groves so the Q1 is in Finance									
Bostonic the 12th size in the top hat of scores									
Si	milarly,	US.	15 1	re le		34. ···	×		
	9								

Quartiles:

Quartiles are values that divide a data set into fourths. The 25^{th} percentile, 50^{th} percentile, and 75^{th} percentile are often referred to as the first quartiles, second quartile, and third quartile.

The second quartile, Q_2 , is the median *M* of the data set. The first quartile, Q_1 , is the median of the <u>bottom</u> half of the data set (the values less than *M*). The third quartile, Q_3 , is the median of the <u>top</u> half of the data set (the values greater than *M*).

<u>Definition</u>: The *interquartile range*, denoted *IQR*, is the difference between the first and third quartiles.

$$IQR = Q_3 - Q_1$$

The *IQR* is the range of the middle 50% of the data set. The interquartile range is a measure of dispersion (how spread out the data are); the standard deviation, variance, and range of the data set are also measures of dispersion. The IQR is resistant to extreme values (outliers); the range and standard deviation are not resistant to extreme values.

An *outlier* is an extreme value (extremely low or extremely high, relative to other values in the data set).

One common definition for an <u>outlier</u>: A data point is considered an outlier if it lies beyond these *fences*:

Lower fence =
$$Q_1 - 1.5(IQR)$$

Upper fence = $Q_3 + 1.5(IQR)$

So, a data point x is an outlier if $x < Q_1 - 1.5(IQR)$ or if $x > Q_3 + 1.5(IQR)$.

Example 8: Using the definition above, find any outliers in these data sets.

Some researchers and statisticians consider a data point to be an extreme outlier if it lies beyond the two <u>outer fences</u> $Q_1 - 3(IQR)$ and $Q_3 + 3(IQR)$. Does the Example 3 data set contain extreme outliers? 3(IQR) = 3(8.58) = 25.554 $Q_1 - 3(IQR) = 54.878 - 25.554 = 29.324$ $Q_3 + 3(IQR) = 63.39(e + 25.554 = 88.95.$ So No, this data set has no extreme outliers.

1.5 (IQR)=