5.2.1

5.2: The Addition Rule and Complements

Example 1: Consider a group of students. 30 of them are enrolled in a math course and 35 are
enrolled in an English course. 13 of the students are enrolled in an English course and also a
math course. How many students are enrolled in math or English?
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Notation: n(A) means the number of elements in setA. = Ho+>S —\> - (S-13
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Addition principle for Counting

For any two sets A and B,

n(AUB)=n(A)+n(B)-n(ANB).

If A and B are disjoint (AN B =), then n(AUB)=n(A)+n(B).
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P(AuB)=P(A)+P(B)-P(AnB)

If the two events are mutually exclusive (disjoint):

P(AuB)=P(A)+P(B)
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Example 2:  Assume that an equally likely sample space is described by the Venn diagram

below. %L i
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Example 1: Suppose that the probability of someone voting for a certain candidate is 0.46.
What is the probability of not voting for the candidate?
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Example 2: Consider the data below, from the Congressional Research Service.

https://fas.org/sgp/crs/misc/RS20811.pdf
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Table |. Distribution of Household Money Income by Selected Income Class, 2012

Income Class

# of Households
(in thousands)

% of Households

w1 A%

All Households 122 459 1000
%5 than $5.000 4,204 i4
$5,000 ea 59,999 4,729 9
$10,000 1o 514,999 6,982 57
| 5,000 to $19.999 7,157 58
$20,000 to $24.599 7,131 55
$25,000 1o $29.999 6,740 54
£30.000 o $34.999 6,354 52
$35,000 1o $39.997 5832 48

£40,000 1o $44.999 5,547

N}TM 545,000 to $49.999 5,254
= N Eﬁo,um to $59,999 9,358 76
\[\9.“.&’ $60,000 1o $69.999 8,305 68
$70,000 wo $79.999 7,170 59
$80,000 to $89.999 5,969 49
$90,000 1o $99.997 4,901 40
£100,000 to 124,999 2490 7.7
$125,000 to $149.999 5759 4.7
£150,000 to §199.997 6116 50
$200,000 to $249.999 1549 21
£250,000 and above 2911 24
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Median Income

Mean Income

$51.017

71,274

Source: U.S. Census Bureau, 2012 Annual Sacial and Economic Supplement to the Current Population Survey.

What is the probability that a randomly selected household has an income of $100,000 or more?

What is the probability that a randomly selected household has an income below $40,000?
RIED= 0,024 <0:039% 0.0 #O-0%98 & 0-65% = O~

~ ©0.052 wxo.04dR - 0.5

What is the probability that a randomly selected household has an income below $250,000?
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What is the probability that a randomly selected household has an income of $20,000 or more?
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Odds:

Sometimes the likelihood (or unlikelihood) of an event is described using odds instead of
probabilities.

Summary:
Probability: The event is contrasted against the whole.

Odds: The event is contrasted against the complement.

Converting from probability to odds:

From Probability to Odds:

e OddsforE = @
P(E")

P(E)

e (Odds against E =
P(E)

When possible, express odds as ratios of whole numbers.
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Example 3: What are the odds against+eling an ace when drawing a single card from a

standard deck?
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Example 4: Suppose that, based upon genetics, a child has a 0.08 probability of deve
certain disease. What are the odds against the child developing the disease?
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Converting odds to probability:

From Odds to Probability:

m
m+n’

If odds for an event E are m, (i.e. m:n) then P(E) =
n
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Example S: If the odds against a horse winning a race are 7:1, what is the probability that the
horse will win? g.c\'wwus/c\mmus S ﬂ%""‘d" .
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Example 6: Suppose an insurance company has used past flood data to determine that
determined that the odds against a particular house flooding are 150:1. What is the probability
that the house floods?

\20 5 \

oS 0&%&\‘\“%* Nosd  afwo
z\/\w‘u‘vm .] Ak’ c\"‘”“-‘u’ o5 %d

vo

oheX drenos /oulomed = ¥o!
o, ?(‘F\m\\: E ~ 3.00 66



