5.2: The Addition Rule and Complements

Example 1: Consider a group of students. 30 of them are enrolled in a math course and 35 are enrolled in an English course. 13 of the students are enrolled in an English course and also a 30-13= 17 math course. How many students are enrolled in math or English?

M: enrolled in math
E: enrolled in English
Given:

$$n(m) = 30$$

 $n(E) = 35$
 $n(E \cap M) = 13$
 $n(E \cap M) = 13$
 $n(M \cup E) = n(M) + n(E) - n(M \cap E)$
Notation: $n(A)$ means the number of elements in set A . = $30 + 35 - 13$ = $(45 - 13)$
Motation: $n(A)$ means the number of elements in set A . = $30 + 35 - 13$ = $(45 - 13)$
Addition principle for Counting
For any two sets A and B .
 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.
If A and B are disjoint $(A \cap B = \emptyset)$, then $n(A \cup B) = n(A) + n(B)$.
Aristorial = mutually exclusive
 $(don't overlap)$

Probability of unions and intersections:

Assume that an equally likely sample space is described by the Venn diagram Example 2: below.

Suppose that the probability of someone voting for a certain candidate is 0.46. Example 1: What is the probability of not voting for the candidate? (

E: Person votes for the conditate.

$$E^{c}$$
: Person does not vote for the candidate.
 $P(E) = 0.546$
 $P(E^{c}) = 1 - 0.46 = 0.54$

Example 2: Consider the data below, from the Congressional Research Service.

https://fas.org/sgp/crs/misc/RS20811.pdf

Income Class	# of Households (in thousands)	% of Households
All Households	122,459	100.0
Less than \$5,000	4,204	3.4
\$5,000 to \$9,999	4,729	3.9
\$10,000 to \$14,999	6,982	5.7
\$15,000 to \$19,999	7,157	5.8
\$20,000 to \$24,999	7,131	5.5
\$25,000 to \$29,999	6,740	5.4
\$30,000 to \$34,999	6,354	5.2
\$35,000 to \$39,999	5,832	4.8
\$40,000 to \$44,999	5,547	4.5
\$45,000 to \$49,999	5,254	4.4 1 48-6
\$45,000 to \$49,999 \$50,000 to \$59,999 \$60,000 to \$69,999	9,358	7.6
\$60,000 to \$69,999	8,305	6.8
\$70,000 to \$79,999	7,170	5.9
\$80,000 to \$89,999	5,969	4.9 Probach
\$90,000 to \$99,999	4,901	5.9 4.9 Probeb 4.0 O . C
\$100,000 to \$124,999	9,490	7.7
\$125,000 to \$149,999	5,759	4.7
\$150,000 to \$199,999	6,116	5.0
\$200,000 to \$249,999	2,549	2.1
\$250,000 and above	2,911	2.4
Median Income	\$51.017	
Mean Income	\$71,274	

Source: U.S. Census Bureau, 2012 Annual Social and Economic Supplement to the Current Population Survey.

What is the probability that a randomly selected household has an income of \$100,000 or more? P(E) = 0.077 + 0.047 + 0.05 + 0.021 + 0.024 = 0.219What is the probability that a randomly selected household has an income below \$40,000? P(E) = 0.034 + 0.039 + 0.057 + 0.058 + 0.055 + 0.054

What is the probability that a randomly selected household has an income below \$250,000?

+ 0.052 + 0.048 -- [0.397]

What is the probability that a randomly selected household has an income of \$20,000 or more?

H: Household name is
$$7 \pm 20000$$

 $H^{c} = 11$ 11 is 2 ± 20000
 $T(H^{c}) = 0.034 + .039 + 0.057 + 0.058 = 0.188$
Approximate the median household income. $T(H) = 1 - 0.188 = 0.911$
 $5/41p$ $5/43$

Odds:

Sometimes the likelihood (or unlikelihood) of an event is described using *odds* instead of probabilities.

Summary:

Probability: The event is contrasted against the whole.

<u>Odds</u>: The event is contrasted against the complement.

Converting from probability to odds:

From Probability to Odds:

• Odds for
$$E = \frac{P(E)}{P(E')}$$

• Odds against
$$E = \frac{P(E')}{P(E)}$$

When possible, express odds as ratios of whole numbers.

$$P(A) = \frac{4}{52} = \boxed{1}_{13}$$

$$\frac{1}{4rowing}$$
5.2.5

Example 3: What are the odds against rolling an ace when drawing a single card from a standard deck? $\Lambda_{i} = 0.665$

40 non-aces
40 non-aces
odds for getting an ace are
$$\frac{4}{40} = \frac{1}{12}$$
 or [1:12
odds against getting an ace are $\frac{40}{40} = \frac{12}{1} = (12:1)$
 $\frac{4}{1} = \frac{12}{1} = (12:1)$

Example 4: Suppose that, based upon genetics, a child has a 0.08 probability of developing a certain disease. What are the odds against the child developing the disease?

 \mathbf{i}

Converting odds to probability:

From Odds to Probability:
If odds for an event *E* are
$$\frac{m}{n}$$
, (i.e. m:n) then $P(E) = \frac{m}{m+n}$.

Example 5: If the odds against a horse winning a race are 7:1, what is the probability that the horse will win?

Example 6: Suppose an insurance company has used past flood data to determine that determined that the odds against a particular house flooding are 150:1. What is the probability that the house floods?