E. Greek letter epsilon

Δ

Supplement: Basic Set Theory

Definition: A set is a well-defined collection of objects. Each object in a set is called an *element* of that set.

Sets can be finite or infinite.

Examples of finite sets:

Examples of infinite sets:

Examples of infinite sets:
Integers
$$\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Any interval on the real number line: (0,1)

Notation:

- We usually use capital letters for sets. We usually use lower-case letters for elements of a set. aeA
- $a \in A$ means a is an element of the set A. • $a \notin A$ means a is not an element of the set A.
- The *empty set* is the set with no elements. It is denoted \emptyset . This is sometimes called the *null set*. ø

adk

 $S = \{x \mid P(x)\}$ means "S is the set of all x such that P(x) is true". (called rule notation or set roster notation).

Example: $S = \{x \mid x \text{ is an even positive integer}\}$ means $S = \{2, 4, 6, 8, ...\}$ t_ such that

n(A) means the number of elements in set A.

<u>Definition</u>: We say two sets are *equal* if they have exactly the same elements.

Subsets:

Definition: If each element of a set A is also an element of set B, we say that A is a subset of B. This is denoted $A \subseteq B$ or $A \subset B$. If A is not a subset of B, we write $A \not\subset B$. ACB ACB or

<u>Definition</u>: We say A is a proper subset of B if $A \subseteq B$ but $A \neq B$. (In other words, every element of A is also an element of B, but B contains at least one element that is not in A.)

<u>Note on notation</u>: Some books use the symbol \subset to indicate a proper subset. Some books use \subset to indicate any subset, proper or not. For universe

Definition: The set of all elements under consideration is called the *universal set*, usually denoted U. Example: If you're dealing with sets of real numbers, then U is the set of all real numbers. So "Wednesday" would not be an element of U, but 5.7 would be in U.

BZA

Example 1: Consider these sets.

$A = \{1, 2, 3, 4, 5, 6\}$	AEB
$B = \{1, 2, 3, 4, 5, 6, 7, 8\}$ $C = \{1, 3, 5, 2, 4, 6\}$	CEB
$C = \{1, 3, 5, 2, 4, 0\}$	A = C

Note:

- \emptyset is a subset of every set. (i.e. $\emptyset \subseteq A$ for every set A.) •
- Every set is a subset of itself. (i.e. $A \subseteq A$ for every set A.) •

Example 2: List all subsets of
$$\{1, 2, 3\}$$
.
 $\{1, 2, 3\}, \{2, 3\}, \{2, 3\}, \{2, 3\}, \{3\}, \{3\}, \{1, 2, 3\}, \{2, 3\}, \{3\}, \{3\}, \{3\}, \{3\}, \{1, 2, 3\}, \emptyset$

Note: If a set has n elements, how many subsets does it have?
H can be proven that So a set of n elements
Set operations: a set of n elements has
$$2^3 = 8$$
 subsets
• Union $\cup : A \cup B = \{x | x \in A \text{ or } x \in B\}$ subsets
(could be ; n both)
• Intersection $\cap : A \cap B = \{x | x \in A \text{ and } x \in B\}$
• Complement A' or A^{C} or $A^{N}: A' = \{x \in U | x \notin A\}$.
A or A^{C} or A^{N}
 $\int_{Our}^{V} book$

(

 $\begin{array}{c} A | s_{0} \\ A \subseteq A \\ C \subseteq A \\ C \subseteq C \end{array}$

Sets.3

Note:
$$A \subseteq (A \cup B)$$
 and $B \subseteq (A \cup B)$.
 $(A \cap B) \subseteq A$ and $(A \cap B) \subseteq B$.

Venn Diagrams: These help us visualize set relationships and operations.

Example 4: Draw Venn diagrams for $A \cup B$, $A \cap B$, A^C , B^C , $(A \cap B)^C$, and $(A \cup B)^C$.

