Sets.1
Supplement: Basic Set Theory

Definition: A set is a well-defined collection of objects. Each object in a set is called an element of that
set.

Examples of sets:
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Sets can be finite or infinite.

Examples of finite sets:
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Examples of infinite sets: -5
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Notation:
e We usually use capital letters for sets. c- (e e 9\0\3&/
We usually use lower-case letters for elements of a set. .
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e ae A means a is an element of the set A.
a¢ A means a is not an element of the set A. A
A

e The empty set is the set with no elements. It is denoted . This is sometimes called the null set.
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e S= { X| P( X)} means “S is the set of all X such that P(X) is true”. (called rule notation or set
roster notation).

Example: S ={X]| X is an even positive integer} means S ={2,4,6,8,...}
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e n(A) means the number of elements in set A.
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Definition: We say two sets are equal if they have exactly the same elements.
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Sets.2
Subsets:

Definition: If each element of a set A is also an element of set B, we say that A is a subset of B. This is
denoted Ac B or Ac B. If Ais not a subset of B, we write Az B .
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Definition: We say A is a proper subset of B if Ac B but A= B. (In other words, every element of A is
also an element of B, but B contains at least one element that is not in A.)

Note on notation: Some books use the symbol < to indicate a proper subset. Some books use c to
indicate any subset, proper or not. ﬁ o WAL

Definition: The set of all elements under consideration is called the universal set, usually denoted U.
Example: If you’re dealing with sets of real numbers, then U is the set of all real numbers. So
“Wednesday” would not be an element of U, but 5.7 would be in U.

Example 1: Consider these sets. e ¥ P~ F(\$c
A={1.2.3.4.5.6) AN &S RN
B={12.3,4.5.6.7.8} 2R cCec
C ={13,5,2,4,6) - ccC
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Note:

e (J isasubset of every set. (i.e. & < A for every set A.)
e Every setis a subset of itself. (i.e. Ac A for every set A.)

Example 2: List all subsets of {1,2,3} .
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e Intersection N : ANB={x|xe Aandxe B}
o Complement A' or A° or A% A'={xeU|xgA}.
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Sets.3
Note: Ag(Au B) and Bg(Au B).

(AnB)c A and (ANB)cB.

Definition: We say that A and B are disjoint sets if AnB=.
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Example 3; U ={1.2.3.4.5.6,7.8) gy don'y auar o)
H ={1.3.5.7) T
K ={1.2.3} SOR = ¢ o S = a\;ﬁ\‘sou\&'
1={2.4,6.8}
L={L2} N A\ = gt \\’65

UL = Q135718
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Venn Diagrams: These help us visualize set relationships and operations.

Example 4: Draw Venn diagrams for AUB, AnB, A®, B,(AnB)°, and (AUB)°.
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