1.2: Finding Limits Graphically and Numerically

Limit of a function:

Definition of a Limit:

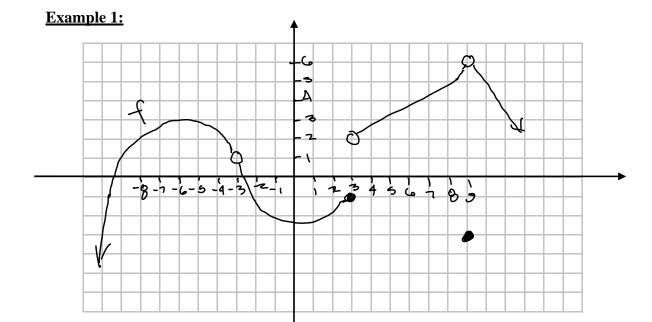
$$\lim_{x \to a} f(x) = L \qquad \lim_{x \to a} f(x) = L$$

The statement above means that we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a but not equal to a.

We read this as "the limit of f(x), as x approaches a, is equal to L."

Alternative notation: $f(x) \to L$ as $x \to a$. (f(x)) approaches L as x approaches a)

Finding limits from a graph:

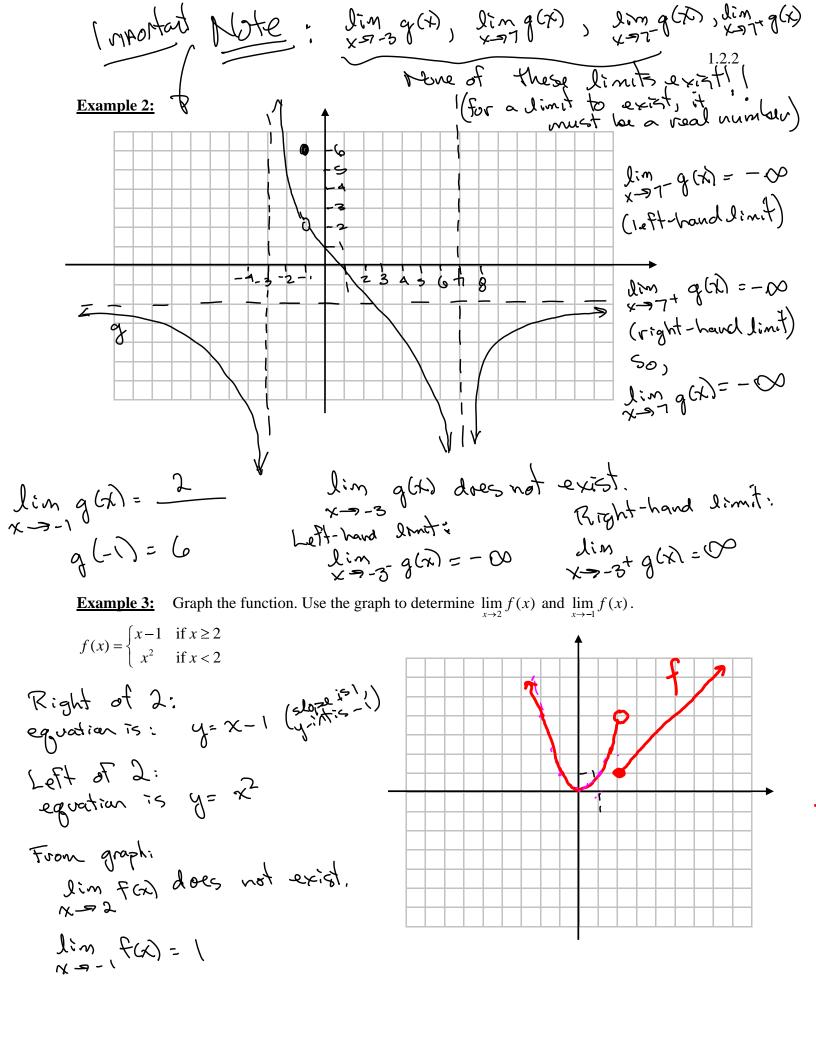


lim
$$f(x) = 2$$

 $x \rightarrow -8$
Note: $f(-3)$ does not
exist.

$$\lim_{x \to 9} f(x) = \frac{6}{5}$$
 $f(9) = -3$

$$f(9) = -3$$



Finding limits numerically:

Example 4: For the function $f(x) = \frac{x-5}{x^2-25}$, make a table of function values corresponding to values of x near 5.

Use the table to estimate the value of $\lim_{r\to 5} \frac{x-5}{r^2-25}$.

From Table, it appears

 $\lim_{x\to 5} \frac{x-5}{x^2-25} = 0.1$

×	F4)= 2-25
4.8	0.10204
	010101

4.9 10.10101

0.1005

0.1001001001 4-99

4.999

0.100010001 0.10000100001

4-9999

5.2 \ 0.9804 5.1 0.09900990099 5.05 0.099502 5.01 0.0999000999

0.0 2999001

Note: Jim sin(x) = 0

As x = 0, what happens to 1 ? laft of O:

As x = 00, the x's are negative ting numbers, reciprocess are neg huge numbers

ks x-90°, \frac{1}{\chi} > -ting

From right: As x > 0t, in thing -> + hugo

So, From left: as x= 0, sin(\frac{1}{\pi}) = sin(\frac{1}{\pi}) = sin(-huge)

oscillades lastween -1 and 1

Tron right; as $\chi \rightarrow 0^+$, $\sin(\frac{1}{\chi}) \rightarrow \sin(\frac{1}{\chi}) \rightarrow \sin(\frac{$

Common reasons $\lim_{x \to c} f(x)$ may not exist:

1. f(x) approaches a different value when approached from the left of c, compared to when approached from the right of c.

2. f(x) increases or decreases without bound as x approaches c.

3. f(x) oscillates between two values as x approaches c.

The formal (epsilon-delta) definition of a limit:

Definition:

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = L$$

$$\in >_0$$

$$\text{epsilon } \in \text{delta } \mathcal{F}$$

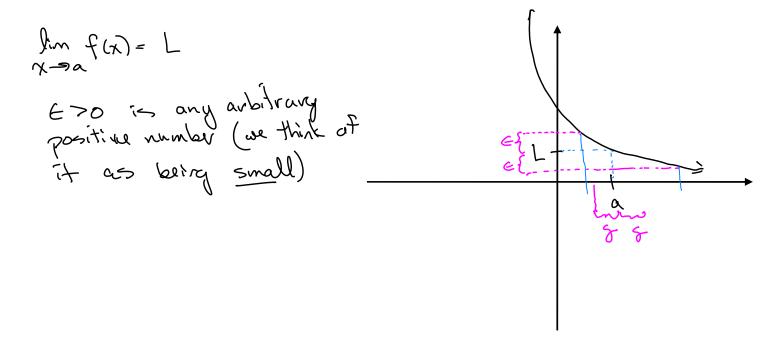
$$\mathcal{F} > 0$$

if for every number $\varepsilon > 0$, there is a number $\delta > 0$ such that

$$|f(x)-L|<\varepsilon$$
 whenever $0<|x-a|<\delta$.

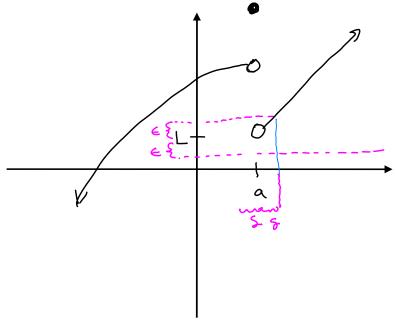
Then $f(x)=0$ within $f(x$

Example 6:



Example 7:

there,
lim for does not exist.
x-a



Example 8: How close to 3 must we take x so that 6x-7 is within 0.1 of 11?

Here, we think of 11 as L and

we think of 3 as a.

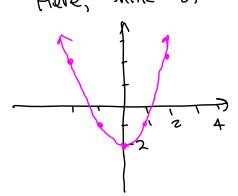
11.1 11

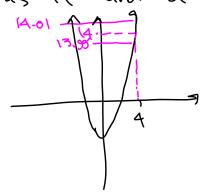
$$6x - 7 = 11.1$$
 $6x - 7 = 10.9$
 $6x = 18.1$
 $4x = \frac{18.1}{6} = 3.016$
 $4x = \frac{17.9}{6}$
 $4x = \frac{17.9}{6}$
 $4x = \frac{17.9}{6}$
 $4x = \frac{17.9}{6}$

So, χ must be within 0.016 of 3. (Choose 8 < 0.016)

Example 9: How close to 4 must we take x so that $x^2 - 2$ is within 0.01 of 14?

Here, think of L as 14 and a as 4. $14.01 = x^2 - 2$





 $(4.01 = \chi^2 - 2)$ $(6.01 = \chi^2)$ $4\% \pm 4.001249805$ (10000 + 1) $(3.99 = \chi^2 - 2)$ $(5.99 = \chi^2)$ 4%3.998749805

Choose & < 0-001249805 of 4 (choose & < 0-001249805) 4-4 % 0.0012501954

lin (2x-5)=3

Example 10: Prove that $\lim_{x\to 4} (2x-5) = 3$ using the definition of a limit.

Scratchwork:

Let 6>0.

We want to show

|(2x-5)-3| < 6

|2x-6| < 6

|2x-4| < 6

|2x-4| < 6

|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| < 6
|x-4| <

Proof: Let 6>0. Then choose $S = \frac{\epsilon}{2}$.

Suppose that 0 < |x-4| < S.

(We now need to show that $|(2x-5)-3| < \epsilon$.) |(2x-5)-3| = |2x-8| = |2(x-4)| = |2|(x-4)| = |2|(

Note: Property of absolute values:

[AB] = [A][B]

Example 11: Prove that $\lim_{x \to -3} (5x+1) = -14$ using the definition of a limit.

lim (5x+1) = - 14 x=-3 Scretchwark | Proof:

(dure in Llacks)

Show

(5x+1)-(-14)/LE

(5x+15/LE

(5(x+3)/LE

5(x+3)/LE

[x+3/LE

[x+3/LE

Proof: Let $\epsilon > 0$. Then choose $S = \frac{\epsilon}{5}$.

Suppose $0 < |x - (-3)| < \delta$.

(we must show that $|(5x+1) - (-14)| < \epsilon$.) |(5x+1) - (-14)| = |(5x+1 + 14)| = |(5x+15)| $= 5|x+3| = 5|x - (-3)| < 55 = 5(\frac{\epsilon}{5})$ $= \epsilon$.

Choose S = 5 (could choose ong S < 5)

Example 12: Prove that $\lim_{x\to 3} x^2 = 9$ using the definition of a limit. Slip the proofs for quadratic functions.

Example 13: Prove that $\lim_{x\to 2} (x^2 - x + 6) = 8$ using the definition of a limit.