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2.1: The Derivative and the Tangent Line Problem N
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What is the definition of a “tangent line to a curve”? 45/0-‘“‘
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To answer the difficulty in writing a clear definition of a tangent line, we can define it as the
limiting position of the secant line as the second point approaches the first.

Definition: The tangent line to the curve y = f(x) at the point (a, f(a)) is the line through P

with slope
— o
m= IimM provided this limit exists. (s ;
X—a X_ a
)
Equivalently, \ o
m=lim fa+ hr)] —(a) provided this limit exists.

Note: If the tangent line is vertical, this limit does not exist. In the case of a vertical tangent,
the equation of the tangent line is x=a.

Note: The slope of the tangent line to the graph of f at the point (a, f (a)) is also called the
slope of the graph of fat x=a.

How to get the second expression for slope: Instead of using the points (a, f (a)) and (x, f (x))
on the secant line and letting x — a, we can use (a, f(a)) and (a+h, f(a+h)) andlet h—0.
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Example 1: Find the slopebéf the curve y =4x*+1 at the point (3,37). Find the equation of
T~ the tangent line at this point. 1
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Example 2:  Find an equation of the tangent line to the curve y = x® at the point (11) 2, 2 \
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-+ xample 3:  Determine the equation of the tangent line to f(x) = Jx at the point Where X=2.
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The derivative:

The derivative of a function at x is the slope of the tangent line at the point (x, f (x)). Itis also
the instantaneous rate of change of the function at x.
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Definition: The derivative of a function f at x is the function f' whose value at x is given by

, provided this limit exists.

f'(x)=IhiLrg f(x+hr)]— f(x)

The process of finding derivatives is called differentiation. To differentiate a function means to
find its derivative.

Equivalent ways of defining the derivative:

f'(x) = lim f(x+Ax) = T(X)  (Our book uses this one. It is identical to the
Ras J}Y 0 Ax—>0 AX definition above, except uses Ax in place of h.)
o Furd: 1) = lim— W= 109
d¥- ,K N W—X W_ X
f'(@)= IimM (Gives the derivative at the specific point where x=a.)
Qo
N g

‘/\MW\\QS’-( f'(a) =lim fla+ hr)] — (@) (Gives the derivative at the specific point where x=a.)
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Example 4:  Suppose that g(x) = X

a@ = L (R &)

X, Determine g'(x) and g'(3).
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Example 5:  Suppose that f (x) =+/x*+1. Find the equation of the tangent line at the point
where x=2.
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Example 6: Determine the equation of the tangent line to f (x) = o
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Summary:

The slope of the secant line between two points is often called a difference quotient. The
difference quotient of f at a can be written in either of the forms below.

£ - f(a) f(a+h)— f (a)
X—a h '

Both of these give the slope of the secant line between two points: (x, f (x)) and (a, f (a)) or,
alternatively, (a, f(a)) and (a+h, f(a+h)).
The slope of the secant line is also the average rate of change of f between the two points.

The derivative of fat a is:

1) the limit of the slopes of the secant lines as the second point approaches the point (a, f(a)) .
2) the slope of the tangent line to the curve y = f(x) at the point where x=a.

3) the (instantaneous) rate of change of f with respect to x at a.

4) IimM (limit of the difference quotient)
X—>a X_a

5) (@) (limit of the difference quotient)

h—0

i f@+h)-
h

Common notations for the derivative of y= f(x):

() Lt % D, (x) & Df ()
dx dx
. dy . . - dy . AX
The notation — was created by Gottfried Wilhelm Leibniz and means — = lim —.
dx dx Ax—>o0 Ay

To evaluate the derivative at a particular number a, we write

f'(@) or Yy
dx
X=a
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Definition: A function f is differentiable at a if f '(a) exists. It is differentiable on an open
interval if it is differentiable at every number in the interval.

Theorem: If f is differentiable at a, then f is continuous at a.

Note: The converse is not true—there are functions that are continuous at a number but not
differentiable.
Note: Open intervals: (a,b), (-«,a), (a,0), (—w©,0).

Closed intervals: [a,b], (-,a], [@,©), (—,0).

To discuss differentiability on a closed interval, we need the concept of a one-sided
derivative.

Derivative from the left: lim Tx)-f(a)
X—a~ X—a

Derivative from the right: lim fx)-f(@)
x—a’ X—a

For a function f to be differentiable on the closed interval [a,b], it must be differentiable
on the open interval (a,b). In addition, the derivative from the right at a must exist, and
the derivative from the left at b must exist.

Ways in which a function can fail to be differentiable:
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Example 7: A
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Example 8: Sketch the graph of a function for which f(0)=2, f'(0)=-1, f(2)=1,
Example 8: grap function ()\/ (0) (?/

f'(2):%, £(3)> £'(2),and ') <0.
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Example 9:  Use the graph of the function to draw the graph of the derivativ, amkak
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