

To answer the difficulty in writing a clear definition of a tangent line, we can define it as the limiting position of the secant line as the second point approaches the first.

<u>Definition</u>: The tangent line to the curve y = f(x) at the point (a, f(a)) is the line through P with slope (x,f(x))

(a,fca))

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 provided this limit exists.

Equivalently,

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 provided this limit exists

Note: If the tangent line is vertical, this limit does not exist. In the case of a vertical tangent, the equation of the tangent line is x = a.

<u>Note</u>: The slope of the tangent line to the graph of f at the point (a, f(a)) is also called the slope of the graph of f at x = a.

How to get the second expression for slope: Instead of using the points (a, f(a)) and (x, f(x))on the secant line and letting $x \to a$, we can use (a, f(a)) and (a+h, f(a+h)) and let $h \to 0$.

Find egn of targed line:

$$y - y = m(x - x_{1}) \quad Or \quad y = m(x + b)$$

$$m = 2A_{1} \times (3)_{1}(37) = y - 37 = 2A(x - 3)$$

$$y - 37 = 2A(x -$$

Example 3: Determine the equation of the tangent line to $f(x) = \sqrt{x}$ at the point where x = 2.

The derivative:

The derivative of a function at x is the slope of the tangent line at the point (x, f(x)). It is also the instantaneous rate of change of the function at x.

<u>Definition</u>: The *derivative* of a function *f* at *x* is the function *f* ' whose value at *x* is given by $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, provided this limit exists.

The process of finding derivatives is called <u>differentiation</u>. To <u>differentiate</u> a function means to find its derivative.

Equivalent ways of defining the derivative:

Result in
$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 (Our book uses this one. It is identical to the definition above, except uses Δx in place of h.)
a Fund in $f'(x) = \lim_{x \to x} \frac{f(w) - f(x)}{w - x}$
Could $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ (Gives the derivative at the specific point where $x = a$.)
in q
if $(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ (Gives the derivative at the specific point where $x = a$.)
Example 4: Suppose that $g(x) = \frac{x^2 - 6x}{3}$. Determine $g'(x)$ and $g'(3)$.
 $g'(x) = \frac{1}{3}(x^2 - (ax))$
 $g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{1}{3}[(a + h)^2 - (a(x+h)] - \frac{1}{3}(x^2 - (ax))]$
 $g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{1}{3}\lim_{h \to 0} \frac{1}{2}(x^2 + h - b) = \lim_{h \to 0} \frac{1}{3}\lim_{h \to 0} \frac{$

$$g'(3) = \frac{2}{3}(3) - 2 = 2 - 2 = 0$$
 slope of targent
line at 2.1.4
 $x = 3$

Example 5: Suppose that $f(x) = \sqrt{x^2 + 1}$. Find the equation of the tangent line at the point where x = 2.

Find devivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{J(x+h)^{2} + I - Jx^{2} + I}{h}$$

$$= \lim_{h \to 0} \frac{Jx^{2} + 2xh + h^{2} + I - Jx^{2} + I}{h} \left(\frac{Jx^{2} + 2xh + h^{2} + I + Jx^{2} + I}{Jx^{2} + 2xh + h^{2} + I} + Jx^{2} + I \right)$$

$$= \lim_{h \to 0} \frac{\sqrt{2} + 2xh + h^{2} + I - (\sqrt{2} + I)}{h} \left(\frac{\sqrt{2} + 2xh + h^{2} + I}{h} + Jx^{2} + I \right)$$

$$= \lim_{h \to 0} \frac{\sqrt{2} + 2xh + h^{2} + I - (\sqrt{2} + I)}{h} \left(\frac{\sqrt{2} + 2xh + h^{2} + I}{h} + Jx^{2} + I \right)$$

$$= \lim_{h \to 0} \frac{2xh + h^{2}}{h} = \lim_{h \to 0} \frac{h(2x+h)}{h(2x+h)}$$

$$\frac{1}{h^{20}} = \frac{1}{h} \left(\sqrt{3x^2 + 2xh + h^2 + 1} + \sqrt{x^2 + 1} + \sqrt{x^2 + 1} \right)$$

$$= \frac{1}{1-70} \frac{27+70}{\sqrt{x^2+2x}h^{-1}h^{-2}+1} = \frac{27+70}{\sqrt{x^2+1}} = \frac{27}{\sqrt{x^2+1}} = \frac{27}{\sqrt{x^2+1}}$$

$$= \frac{1}{\sqrt{x^2+2x}h^{-1}h^{-2}+1} + \sqrt{x^2+1} = \frac{2}{\sqrt{x^2+1}} = \frac{2}{\sqrt$$

Example 6: Determine the equation of the tangent line to $f(x) = \frac{x-2}{x^2+1}$ at the point $\left(-2, -\frac{4}{5}\right)$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{x+h-2}{(x+h)^2 + 1} - \frac{x-2}{x^2 + 1}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{x+h-2}{x^2 + 2xh+h^2 + 1} - \frac{x-2}{x^2 + 1} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{x+h-2}{x^2 + 2xh+h^2 + 1} - \frac{x-2}{x^2 + 1} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{x+h-2}{x^2 + 2xh+h^2 + 1} - \frac{x^2 + 2xh+h^2 + 1}{x^2 + 2xh+h^2 + 1} \right]$$

$$= \lim_{h \to 0} \ln \left[\frac{x^{3} + x^{2} + hx^{2} + h - 2x^{2} - 2 - (x^{3} + 2x^{2}h + xh^{2} + xh^{2} - 4xh - 2h^{2}) - (x^{2} + 2xh + hx^{2} + 1)(x^{2} + 2xh + hx^{2} + 1) - (x^{2} + 1) - (x^{2} + 2xh + hx^{2} + 1) - (x^{2} +$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{hx^{2} + h - 2xh - xh^{2} + 4xh + 2h}{(x^{2} + 1)(x^{2} + 2xh + h^{2} + 1)} \right] \left[\frac{hx^{2}}{x^{2}} + \frac{1}{x^{2}} +$$

Ex 5 control Find equation of tangent line at
point where
$$x = \lambda$$
.
Let's use $y - y_1 = m(x - x_1)$:
 $f(x) = \sqrt{x^2 + 1}$, so $y_1 = f(2) = \sqrt{2^2 + 1} = \sqrt{5}$
 $y - \sqrt{5} = \frac{2\sqrt{5}}{5}(x - 2)$
 $y - \sqrt{5} = \frac{2\sqrt{5}}{5}x - \frac{4\sqrt{5}}{5}$
 $y = \frac{2\sqrt{5}}{5}x - \frac{4\sqrt{5}}{5} + \sqrt{5}$
 $y = \frac{2\sqrt{5}}{5}x - \frac{4\sqrt{5}}{5} + \sqrt{5}$
 $y = \frac{2\sqrt{5}}{5}x - \frac{4\sqrt{5}}{5} + \sqrt{5}$

$$\frac{\text{Eve } (6: \text{ Continued})}{\lim_{h \to 0} \left[\frac{-x^2 + 1 + 4x + 2h}{(x^2 + 1)(x^2 + 2xh + h^2 + 1)} \right]} = \frac{-x^2 + 1 + 4x + 2(6)}{(x^2 + 1)(x^2 + 2xk + h^2 + 1)}$$
$$= \frac{-x^2 + 1 + 4x}{(x^2 + 1)(x^2 + 2xk + h^2 + 1)} = \frac{-x^2 + 1 + 4x}{(x^2 + 1)^2} = f'(x)$$

Find slops:

$$f'(-2) = \frac{-(-2)^2 + 1 + 4(-2)}{((-2)^2 + 1)^2} = \frac{-4 + 1 - 8}{5^2} = -\frac{11}{25}$$

Then find eqn of targent sino.

Summary:

The slope of the secant line between two points is often called a <u>difference quotient</u>. The <u>difference quotient of f at a can be written in either of the forms below</u>.

$$\frac{f(x) - f(a)}{x - a} \qquad \qquad \frac{f(a+h) - f(a)}{h}.$$

Both of these give the slope of the secant line between two points: (x, f(x)) and (a, f(a)) or, alternatively, (a, f(a)) and (a+h, f(a+h)).

The slope of the secant line is also the average rate of change of f between the two points.

The <u>derivative of *f* at *a* is:</u>

- 1) the limit of the slopes of the secant lines as the second point approaches the point (a, f(a)).
- 2) the slope of the tangent line to the curve y = f(x) at the point where x = a.
- 3) the (instantaneous) rate of change of f with respect to x at a.
- 4) $\lim_{x \to a} \frac{f(x) f(a)}{x a}$ (limit of the difference quotient)
- 5) $\lim_{h \to 0} \frac{f(a+h) f(a)}{h}$ (limit of the difference quotient)

Common notations for the derivative of y = f(x):

$$f'(x)$$
 $\frac{d}{dx}f(x)$ y' $D_xf(x)$ $\frac{dy}{dx}$ $Df(x)$

The notation $\frac{dy}{dx}$ was created by Gottfried Wilhelm Leibniz and means $\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta y}$. To evaluate the derivative at a particular number *a*, we write

$$f'(a)$$
 or $\frac{dy}{dx}\bigg|_{x=a}$

L

Differentiability:

"Differentiate means to take the derivative.

<u>Definition</u>: A function f is *differentiable* at a if f'(a) exists. It is *differentiable on an open interval* if it is differentiable at every number in the interval.

<u>Theorem</u>: If f is differentiable at a, then f is continuous at a.

<u>Note</u>: The converse is not true—there are functions that are continuous at a number but not differentiable.

<u>Note</u>: Open intervals: (a,b), $(-\infty,a)$, (a,∞) , $(-\infty,\infty)$.

Closed intervals: [a,b], $(-\infty,a]$, $[a,\infty)$, $(-\infty,\infty)$.

To discuss differentiability on a closed interval, we need the concept of a *one-sided derivative*.

Derivative from the left: $\lim_{x \to a^-} \frac{f(x) - f(a)}{x - a}$

Derivative from the right: $\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}$

For a function f to be differentiable on the closed interval [a,b], it must be differentiable on the open interval (a,b). In addition, the derivative from the right at a must exist, and the derivative from the left at b must exist.

Ways in which a function can fail to be differentiable:

- 1. Sharp corner
- 2. Cusp
- 3. Vertical tangent
- 4. Discontinuity

$$\lim_{x \to a} f(x) = -80$$
 and $\lim_{x \to a} F'(x) = +80$

١

Example 9: Use the graph of the function to draw the graph of the derivative.

