5.1: The Natural Logarithmic Function: Differentiation

An algebraic approach to logarithms:

<u>Definition</u>: $\log_b x = y$ is equivalent to $b^y = x$. The functions $f(x) = b^x$ and $g(x) = \log_b x$ are inverses of each other. *b* is called the *base* of the logarithm.

The logarithm of base *e* is called the *natural logarithm*, which is abbreviated "ln".

A calculus approach to the natural logarithm:

For x > 1, $\ln x$ can be interpreted as the area under the graph of $y = \frac{1}{t}$ from t = 1 to t = x.

Note: The integral is not defined for x < 0.

For x = 1, $\ln x = \int_{1}^{1} \frac{1}{t} dt = 0$. For x < 1, $\ln x = \int_{1}^{x} \frac{1}{t} dt = -\int_{x}^{1} \frac{1}{t} dt < 0$. Recall: <u>The Fundamental Theorem of Calculus, Part II</u>: Let f be continuous on the interval [a,b]. Then the function g defined by $g(x) = \int_{a}^{x} f(t) dt$, $a \le x \le b$ is continuous on [a,b] and differentiable on (a,b), and g'(x) = f(x).

Apply the Fundamental Theorem of Calculus to the function $f(t) = \frac{1}{t}$.

 $\frac{d}{dx}(1) = \frac{d}{dx}\left(\int_{1}^{x} \frac{1}{t} dt\right) = \frac{1}{x}$

This means that $\frac{d}{dx}(\ln x) = \frac{1}{x}$.

The Derivative of the Natural Logarithmic Function $\frac{d}{dx}(\ln x) = \frac{1}{x}$

Laws of Logarithms:

If *x* and *y* are positive numbers and *r* is a rational number, then:

1.
$$\ln(xy) = \ln x + \ln y$$

2. $\ln\left(\frac{x}{y}\right) = \ln x - \ln y$
Note: This also gives us $\ln\left(\frac{1}{x}\right) = -\ln x$.
3. $\ln(x^r) = r \ln x$

Example 1: Expand
$$\ln\left(\frac{x^3\sqrt{x+5}}{x^2+4}\right)$$
.
 $\ln\left(\frac{x^3\left(x+5\right)^{1/2}}{x^2+4}\right) = \ln\left(x^3\left(x+5\right)^2\right) - \ln\left(x^2+4\right)$
 $= \ln x^3 + \ln\left(x+5\right)^{1/2} - \ln\left(x^2+4\right)$
 $= 3\ln x + \frac{1}{2}\ln\left(x+5\right) - \ln\left(x^2+4\right)$

The graph of $y = \ln x$:

It can be shown that $\lim_{x \to \infty} \ln x = \infty$ and that $\lim_{x \to \infty} \infty$. $\lim_{x \to \infty} \ln x = 0$ $\lim_{x \to \infty} + \ln x = -0$ For x > 0, $\frac{dy}{dx} = \frac{1}{x} > 0$ so $y = \ln x$ is increasing on $(0, \infty)$.

For
$$x > 0$$
, $\frac{d^2 y}{dx^2} = -\frac{1}{x^2} < 0$ so $y = \ln x$ is concave down on $(0, \infty)$.

Because $\ln 1 = 0$ and $y = \ln x$ is increasing to arbitrarily large values $\left(\lim_{x \to \infty} \ln x = \infty\right)$, the Intermediate Value Theorem guarantees that there is a number *x* such that $\ln x = 1$. That number is called *e*.

 $e \approx 2.71828182845904523536$

(*e* is in irrational number—it cannot be written as a decimal that ends or repeats.)

$$\frac{d}{dx}(lnx) = \frac{1}{x}$$
5.1.4

Example 2: Find $\frac{dy}{dx}$ for $y = \ln(2x^5 + 3x)$. $\frac{dy}{dx} = \frac{1}{2x^5 + 3x} \cdot \frac{d}{dx} (2x^5 + 3x) \quad [chain rule]$ $= \frac{1}{2x^5 + 3x} \cdot \frac{d}{dx} (10x^4 + 3) = \underbrace{\frac{10x^4 + 3}{2x^5 + 3x}}_{2x^5 + 3x}$

<u>Note</u>: $\frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}$ or, written another way, $\frac{d}{dx}(\ln g(x)) = \frac{g'(x)}{g(x)}$.

Example 3: Determine
$$\frac{d}{dx}(\ln(\cos x))$$
.
 $\frac{d}{\partial x}(\ln(\cos x)) = \frac{1}{\cos x} \frac{d}{\partial x}(\cos x) = \frac{1}{\cos x}(-\sin x)$
 $= -\frac{1}{\cos x}$

Example 4: Find the derivative of
$$f(x) = \frac{1}{\ln x}$$
.
 $f(x) = (\ln x)^{-1}$
 $f'(x) = -1(\ln x)^2 \frac{d}{dx}(\ln x) = -1(\ln x)^2(\frac{1}{x}) = \left[-\frac{1}{x(\ln x)^2}\right]$

Example 5: Find the derivative of
$$f(x) = x^2 \ln x$$
.
 $f'(x) = \sqrt{2} \frac{d}{dx} (\ln x) + (\ln x) \frac{d}{dx} (x)$
 $= \sqrt{2} \left(\frac{1}{\chi}\right) + (\ln x)(2x) = (\chi + 2\chi \ln(x))$
 $= \sqrt{2} \left(\frac{1}{\chi}\right) + (\ln x)(2x) = (\chi + 2\chi \ln(x))$

Example 6: Find the derivative of $y = \frac{\ln x}{4x}$.

7

$$\frac{dy}{dx} = \frac{4\pi \frac{d}{dx}(lnx) - (lnx)\frac{d}{dx}(4x)}{(4x)^2} = \frac{4\pi \frac{d}{dx}(lnx) - (lnx)(4)}{(6x)}$$

Example 8: Determine the derivative of $f(x) = \frac{\ln 6x}{(x+4)^5}$.

Logarithmic differentiation:

To differentiate y = f(x):

- 1. Take the natural logarithm of both sides.
- 2. Use the laws of logarithms to expand.
- 3. Differentiate implicitly with respect to *x*.

4. Solve for
$$\frac{dy}{dx}$$

Example 9: Use logarithmic differentiation to find the derivative of

$$y = (x^{2}+2)^{5}(2x+1)^{3}(6x-1)^{2}.$$

$$lny = ln \left((x^{2}+2)^{5}(2x+1)^{3}((lex-1)^{2} \right)$$

$$lny = 5ln (x^{2}+2) + 3ln (2x+1) + 2ln (lex-1)$$

$$\frac{d}{dx} (lny) = \frac{d}{dx} \left(5ln (x^{2}+2) + 3ln (2x+1) + 2ln (lex-1) \right)$$

$$\frac{d}{dx} (lny) = \frac{d}{dx} \left(\frac{1}{\sqrt{2}+2} \right)^{(2\chi)} + 3 \left(\frac{1}{2\chi+1} \right)^{(2)} + 2 \left(\frac{1}{(lex-1)} \right)^{(6)}$$

$$\frac{d}{dx} = 9 \left(\frac{10\chi}{\sqrt{2}+2} + \frac{6}{2\chi+1} + \frac{12}{(lex-1)} \right) = \left((x^{2}+2)^{5}(2x+1)^{3} (lex-1)^{2} \left(\frac{10\chi}{\sqrt{2}+2} + \frac{6}{2\chi+1} \right) + \frac{12}{\sqrt{3}x} \right)$$

$$Example 10: \text{ Find } y' \text{ for } y = \frac{(x^{3}+1)^{4} \sin^{2} x}{\sqrt[3]{x}}.$$