5.11

5.1: The Natural Logarithmic Function: Differentiation

An algebraic approach to logarithms:

Definition: log, X =y is equivalentto b’ = x.

The functions f(x)=b* and g(x) =log, x are inverses of each other.

b is called the base of the logarithm.

The logarithm of base e is called the natural logarithm, which is abbreviated “In”.
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Inx =log, X.

Therefore Inx =y is equivalent to €’ = x and the functions f(x)=¢e* and g(x) =Inx are
inverses of each other.

A calculus approach to the natural logarithm:

The natural logarithm function is defined as

TL ab(e
- r
= L3
9&\'\( Sa ")C>0)

= OV ‘*"\/A"n *&a
ot~ ST

%(0:/\/\ \ ’\'0 x

Inx=jlx%dt, x>0.
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B‘fe interpreted as the area under the graph of y =%

For x>1, Inx can fromt=1tot=x.



Note: The integral is not defined for x <0. ~ Ny
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Recall: The Fundamental Theorem of Calculus, Part I1:

Let f be continuous on the interval [a,b]. Then the function g defined by
g(x)=LXf(t)dt, a<x<b

is continuous on [a,b] and differentiable on (a,b), and g'(x) = f(x).

Apply the Fundamental Theorem of Calculus to the function f(t) = %
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This means that i(In X) -1
dx X

The Derivative of the Natural Logarithmic Function
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Laws of Logarithms:

If x and y are positive numbers and r is a rational number, then:

1 In(xy)=Inx+Iny

2. In(§]=lnx—lny
y

Note: This also gives us In[lj =-Inx.
X

3. In(xr):rlnx
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3/
Example 1: Expand In(xxziZS .
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The graph of y=Inx:

It can be shown that limInx = and that\iﬂ;ﬂ.
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For x>0, %:£>0 so y=Inx isincreasing on (0,).
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For x>0, 3 2/:—%<0 so y=Inx is concave down on (0,).
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Because In1=0 and y =Inx is increasing to arbitrarily large values (Iim Inx = oo), the

Intermediate VValue Theorem guarantees that there is a number x such that Inx =1. That number
is called e.

e~ 2.71828182845904523536

(e is in irrational number—it cannot be written as a decimal that ends or repeats.)
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Example 2: Find (;_y for y=In(2x> +3x).
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Example 3: Determine di(ln(cos X)).
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Example 4:  Find the derivative of f(x) = %
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Example 5:  Find the derivative of f(x)=x*Inx.
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Example 6: Find the derivative of y = T— .
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Example 7: Find the derivative of g(t) =In(7t).
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Example 8: Determine the derivative of f(x)= In6x5.
(x+4)

Logarithmic differentiation:

To differentiate y = f(x):
1. Take the natural logarithm of both sides.
2. Use the laws of logarithms to expand.

3. Differentiate implicitly with respect to x.

4. Solve for ﬂ

dx
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Example 9:  Use logarithmic differentiation to find the derivative of

y = (x*+2)°(2x+1)*(6x~1)*.
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Example 10: Find y' for y=
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