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Linear Inequalities
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Graphing Linear Inequalities

Definition: Linear Inequality in One Variable

A linear inequality in one variable, X, is defined as any relationship of the form:
ax+b<c,ax+b<c,ax+b>c,or ax+b>c,where a=0.

Examples of linear inequalities in one variable

2X+5<8 —-6C+1>0

Definition: Compound Inequality

A compound inequality is a statement that involves more than one inequality

Noler -2t = 2w

Examples of compound inequalities

-3<x<5 -3 <Xxand x<5

4<x<9 4<xand Xx<9
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6.2y>9

Led— & X >-3

X is greater than —3 and X is less than 5.

X is greater than 4 and X is less than or equal to 9.

A number line is a useful tool to visualize the solution set of an equation or inequality.

Solution Translation Graph of Solution Notes
. ' —— e @————i—p Graph a number as a single
x=4 X is equal to 4 5 43240 F 28 45 8 P : s
point.
. ov . Eﬁ ’! The parenthesig, ( > is used on
X>4 X is greater than 4 S T 8 the graph to indicate that
5 4 3 -2 1 0 1 2 3 4 5 6 . .
X =4 is not included.
The square bracket symbol,
x> 4 X is greater than _— : — [, is used on the graph to
- or equal to 4 54324101 2 3 45 6 indicate that x =4 is
o included.
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Graph the solution sets.
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Set-Builder Notation and Interval Notation

Set-Builder Notation
Inequality: X =2 Set-builder notation: X|X= 2 O -t

The set of all x such that X is greater than or equal to 2 @ ooj
)
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Interval Notation
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Inequality: X >4

Interval Notation: [4 , o) g”(\'x? AQ\S
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5. Fill in the chart.

Set-Builder Notation Graph Interval Notation
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Addition and Subtraction Properties of Inequality
Addition and Subtraction Properties of Inequality
Let a, b, and ¢ represent real numbers.
If a<b,then a+c<b+c you may add the same number on both sides
Ifa<b,then a—c<b-c you may subtract the same number from both sides

These properties may also be stated for a<b, a>Db,and a>b.

10. Solve the inequality. Graph the solution set and write the set in interval notation.
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Multiplication and Division Properties of Inequality

Multiplication and Division Properties of Inequality

Let a, b, and c represent real numbers.

a b »
If ¢ is positive and a <b, then ac <bcand — <— you may multiply or divide by the same positive
cC C
number on both sides
a_b :
If ¢ is negative and @ <b , then ac >bc and —>— you may multiply or divide by the same negative
cC C

number on both sides, but you MUST reverse the

inequality sign

These properties may also be stated for a<b, a>b,and a>b.

Solve the inequality. Graph the solution set and write the set in interval notation.
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15. Determine whether the given number is a solution to the inequality.

3(x-1)+7>16+x; x=6

Inequalities of the Form a <X <b
Qc,om\-atma v OO&-QQ\"JB

To solve a compound inequality, isolate the variable x in the middle.

Note: The operations performed on the middle portion of the inequality must also be performed on the left-hand
side and right-hand side.

Graph the solution.
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Commonly used translations to express inequalities.

English Phrase Mathematical Inequality
ais less than b a<b
a is greater than b a>b
aexceeds b
a is less than or equal to b
ais at mostb a<b

a is no more than b

a is greater than or equal to b
ais at least b a=b
a is no less than b




For 18 - 21, translate the English phrases into mathematical inequalities.

18. The temperature in the classroom, t, was at most 75°F .

(]
€ 415€¢
19. The number of goals John scored, g, exceeded 4.

A5
20. Ann's weight, w, is between 120 Ib and 130 Ib.

22. A company sells boxes of chocolates for fundraising. The company sells the boxes for $40 each. However, for
large orders, the price per box is discounted by a percentage off the original price. Let X represent the number
of boxes ordered. The corresponding discount is given in the table.

a. If a school orders 1000 boxes of chocolates, compute the Number of Boxes Ordered Discount
total cost.
X <500 0%

\ 501< x <1000 20%
&\&Sﬁ‘ . x>1001 25%

Sle

b. Which costs more: 500 boxes or 502 boxes? Explain your answer.



17. -9<3y<12 : ,\
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