

Graphing Linear Inequalities

Definition: Linear Inequality in One Variable

A linear inequality in one variable, x, is defined as any relationship of the form: ax+b < c, $ax+b \le c$, ax+b > c, or $ax+b \ge c$, where $a \ne 0$.

Examples of linear inequalities in one variable

2x + 5 < 8 -6c + 1 > 0 $v \ge -9$ $6.2y \ge 9$

Definition: Compound Inequality

A compound inequality is a statement that involves more than one inequality. Hole: $-3 < \chi$ is equivalent to $\chi > -3$ Examples of compound inequalities							
Examples of	f compound inequalities	· - 3 < x is equivaled it					
-3 < x < 5	-3 < x and x < 5	means x is greater than -3 and x is less than 5.					
$4 < x \le 9$	$\frac{1}{2} 4 < x \text{ and } x \le 9$	means x is greater than 4 and x is less than or equal to 9.					

A number line is a useful tool to visualize the solution set of an equation or inequality.

Solution	Translation	Graph of Solution	Notes
<i>x</i> = 4	x is equal to 4	-5 -4 -3 -2 -1 0 1 2 3 4 5 6	Graph a number as a single point.
x > 4	x is greater than 4		The parenthesis, (, is used on the graph to indicate that x = 4 is <i>not</i> included.
$x \ge 4$	x is greater than or equal to 4	-5 -4 -3 -2 -1 0 1 2 3 4 5 6	The square bracket symbol, [, is used on the graph to indicate that $x = 4$ is included.
		0 4	

Graph the solution sets.

1. x < 5

2. $x \ge -2$

Set-Builder Notation	Graph	Interval Notation
5. $\{x x \ge 4\}$		[₄,∞)
6. {x\x>4}	-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6	(4,00)
7. {x\x≤-2}	-2-10;	$(-\infty, -2]$
8. $\{x \mid -2 < x \le 4\}$		(-2, 4]
9. {x \ 0 < x < 4}	-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6	(e, 4)

Addition and Subtraction Properties of Inequality

Addition and Subtraction Properties of Inequality

Let *a*, *b*, and *c* represent real numbers.

If a < b, then a - c < b - c you may subtract the same number from both sides

These properties may also be stated for $a \le b$, a > b, and $a \ge b$.

10. Solve the inequality. Graph the solution set and write the set in interval notation.

Multiplication and Division Properties of Inequality

Let *a*, *b*, and *c* represent real numbers.

If c is positive and
$$a < b$$
, then $ac < bc$ and $\frac{a}{c} < \frac{b}{c}$

If c is negative and
$$a < b$$
, then $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$

you may multiply or divide by the same *positive* number on both sides you may multiply or divide by the same *negative*

number on both sides, but you MUST reverse the inequality sign

These properties may also be stated for $a \le b$, a > b, and $a \ge b$.

Solve the inequality. Graph the solution set and write the set in interval notation.

11.
$$-g \le 7$$

 $= \frac{q}{-1} \ge \frac{1}{12}$ realized the 12. $8 < 2x - 10$
 $= \frac{q}{-1} \ge \frac{1}{12}$ realized the 10
 $q \ge -7$ signt $(2w = \frac{1}{2} + \frac{2w}{2})$
 $= \frac{1}{2} < \frac{-2w}{-2}$
 $(2w = \frac{1}{2} + \frac{2}{2})$
 $(2w = \frac{1}{2} +$

15. Determine whether the given number is a solution to the inequality.

$$3(x-1)+7 > 16+x; \quad x=6$$

Inequalities of the Form a < x < b(control inequality, isolate the variable x in the middle.

Note: The operations performed on the middle portion of the inequality must also be performed on the left-hand side and right-hand side.

Commonly used translations to express inequalities.

English Phrase	Mathematical Inequality
<i>a</i> is less than <i>b</i>	a < b
a is greater than ba exceeds b	a > b
<i>a</i> is less than or equal to <i>b</i> <i>a</i> is at most <i>b</i> <i>a</i> is no more than <i>b</i>	$a \leq b$
<i>a</i> is greater than or equal to <i>b</i> <i>a</i> is at least <i>b</i> <i>a</i> is no less than <i>b</i>	$a \ge b$

For 18 - 21, translate the English phrases into mathematical inequalities.

18. The temperature in the classroom, t, was at most 75° F.

$$E \leq 75^{\circ}F$$

19. The number of goals John scored, g, exceeded 4.

20. Ann's weight, w, is between 120 lb and 130 lb.

_

- 22. A company sells boxes of chocolates for fundraising. The company sells the boxes for \$40 each. However, for large orders, the price per box is discounted by a percentage off the original price. Let x represent the number of boxes ordered. The corresponding discount is given in the table.
- a. If a school orders 1000 boxes of chocolates, compute the total cost.

Number of Boxes Ordered	Discount
<i>x</i> ≤ 500	0%
$501 \le x \le 1000$	20%
<i>x</i> ≥1001	25%

Skip these!

b. Which costs more: 500 boxes or 502 boxes? Explain your answer.

Ex.
$$-4 \leq \frac{1}{3} \times \frac{1}{2} \leq \frac{9}{2}$$

Multiply all 3 sides by -6° .
 $-4(6) \leq \frac{1}{3} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} = \frac{9}{2} \cdot \frac{6}{1}$
 $-24 \leq \frac{1}{3} \times \frac{1}{6} \leq \frac{54}{2}$
 $-24 \leq 4x + 3 \leq 27$
 $-37 \leq 4x \leq 24$
 $-\frac{17}{4} \leq \frac{4x}{4} \leq \frac{24}{4}$
 $-6\frac{3}{4} \leq x \leq 6$
 $\int \left\{ \frac{1}{6} - \frac{63}{4} \leq x \leq 6 \right\}$

Homework
$$6s$$

2..8 #97] the termine whither the given number is a
solution. to the inequality.
 $-2x+5<4; x = -2$
We need to decide if -2 makes the inequality true.
 $-2x+5<4$
 $solution.$
 $-2x+5<4$
 $4+5<4$
 $9<4$ False
No, it is not
a solution.

