Addition and Subtraction of Rational Expressions with the Same Denominator

Note: To add or subtract rational expressions, the expressions must have the same denominator.

PROPERTY Addition and Subtraction of Rational Expressions Let *p*, *q*, and *r* represent polynomials where $q \neq 0$. Then, 1. $\frac{p}{q} + \frac{r}{q} = \frac{p+r}{q}$ 2. $\frac{p}{q} - \frac{r}{q} = \frac{p-r}{q}$

Ex:

$$\frac{2}{1} + \frac{3}{7} = \frac{2+3}{7} = \frac{5}{7}$$

Note: To add or subtract rational expressions with the same denominator:

- combine the terms in the numerator
- write the result over the common denominator
- if possible, simplify the expression to lowest terms

For exercises 1 - 6, add or subtract the expressions with like denominators as indicated.

$$1. \frac{7}{10} - \frac{2}{10} = \frac{7 - \lambda}{10} = \frac{5}{10}$$

$$= \left(\frac{1}{2}\right)$$

$$Ex: \frac{3}{8} - \frac{1}{8} = \frac{3 - 2}{8} = \left(\frac{1}{8}\right)$$

$$2. \frac{3a}{a - 4} - \frac{a + 8}{a - 4} = \frac{(3 - a)}{a - 4} - \frac{(a + 6)}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - a - 8}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a + 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4} = \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}{a - 4}$$

$$= \frac{3a - (a - 8)}$$

5.
$$\frac{c^2}{c-6} - \frac{36}{c-6}$$

6. $\frac{4}{3x^2 + 2x-8} + \frac{-3x}{3x^2 + 2x-8}$
 $\frac{2^2 - 36}{c-6} = \frac{(c+6)(c-6)}{c-6}$
 $\frac{4}{-3x} = \frac{4-3x}{3x^2 + 2x-8}$
 $\frac{4-3x}{3x^2 + 2x-8} = \frac{4-3x}{(3x-4)(x+2)}$
Addition and Subtraction of Rational Expressions with Different Denominators
Note: To add or subtract two rational expressions, the expressions must have the same denominator.
PROCEDURE Adding or Subtracting Rational Expressions.
Step 1 Factor the denominators of each rational expression.
Step 2 Identify the LCD $\frac{Ex}{2}$, $\frac{2}{7}$, $\frac{1}{3}$, $\frac{2}{7}$, $\frac{2}{3}$, $\frac{1}{3}$, $(\frac{7}{7})$, $\frac{6}{2}$, $\frac{7}{21}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{7}$, $\frac{1}{2}$, $\frac{1}{21}$, $\frac{1}{3}$, $\frac{$

For exercises 7 - 13, add or subtract the expressions with unlike denominators as indicated.

For exercises 7 - 13, add or subtract the expressions with unlike denominators as indicated.
7.
$$\frac{4}{a^2b^4} + \frac{2}{a^4b^3}$$
LCD: $\frac{4}{b^4} + \frac{4}{b^6}$

8. $\frac{4}{5t+10} + \frac{6}{t+2}$

 $\frac{4}{a^2b^4} + \frac{2}{a^4b^3}$

8. $\frac{4}{5t+10} + \frac{6}{t+2}$

 $\frac{4}{5(t+2)} + \frac{4}{a^4b^3}$

 $\frac{4}{a^2b^4} + \frac{2}{a^4b^3}$

 $\frac{4}{b^6} + \frac{4}{5t+10} + \frac{6}{t+2}$

 $\frac{4}{5(t+2)} + \frac{4}{5(t+2)} + \frac{6}{t+2}$

 $\frac{4}{5(t+2)} + \frac{2}{5(t+2)}$

 $\frac{4}{a^4b^4} + \frac{2}{a^4b^3}$

 $\frac{4}{a^2b^4} + \frac{2}{a^4b^3}$

 $\frac{4}{b^4} + \frac{4}{b^4}$

 $\frac{4}{b^4} + \frac{4}{b^4}$

 $\frac{4}{5t+10} + \frac{6}{t+2}$

 $\frac{4}{5(t+2)} + \frac{6}{t+2}$

$$\begin{array}{rcl} 9. & \frac{y}{y-8} + \frac{4}{y} \\ \hline \begin{array}{c} (4) \\ (4) - 8 \\ (4) - 8 \\$$

14. Find an expression that represents the perimeter of the figure. Assume that b > 0.

Using Rational Expressions in Translations

- 15. Write the reciprocal of the difference of a number and 4.
- 16. Write the quotient of 6 and the sum of 3 and a number.

For exercises 17 and 18, translate the English phrases into algebraic expressions. Then simplify by combining the rational expressions.

17. The sum of the reciprocal of a number and the quotient of 5 and twice the number.

18. The difference of a number and six times the reciprocal of the number.