Commutative Properties of Real Numbers Commutative Properties of Real Numbers Commutative Property of Addition a+b=b+a(The order in which two numbers are added does not affect the sum.) *Note:* The operations of subtraction and division are <u>not</u> commutative. Note: The operations of subtraction and division are <u>not</u> commutative. **Commutative Property of Multiplication** ab = ba(The order in which two numbers are Use the commutative property of addition or multiplication to rewrite each expression. 3. b(-52)= -52/0 = 12z + 5a 2. a-17 $z-17 \neq \infty$ 1. -m(x)-mGA - - ~M **Associative Properties of Real Numbers Commutative Properties of Real Numbers** (The manner in which three numbers are (a+b)+c = a+(b+c)Associative Property of Addition grouped under addition does not affect the sum.) (The manner in which three numbers Associative Property of Multiplication (ab)c = a(bc)are grouped under multiplication does not affect the sum.) Use the associative property of addition or multiplication to rewrite each expression. Then simplify the expression.

Identity and Inverse Properties of Real Numbers

Identity and Inverse Properties of Real Numbers

Identity Property of Addition Identity Property of Multiplication Inverse Property of Addition

Inverse Property of ultiplication

If *a* is a real number and *b* is a nonzero real number, then

a+0=0+a=a $a\cdot 1=1\cdot a=a$ a+(-a)=-a+a=0 $b\cdot \frac{1}{b}=\frac{1}{b}\cdot b=1$ b = 1 0 is said to be the *additive identity* and 1 is said to be the *multiplicative identity*. *Multiplicative the top to the multiplicative identity*.

Distributive Property of Multiplication over Addition

If a, b, and c are real numbers, then

$$a(b+c) = ab + ac$$
 and $(b+c)a = ab + ac$

Use the distributive property to rewrite each expression.

8.
$$5(a-3) = 5a-15$$

9. $6(-9x+8y-12z) = 6(-9x) + 6(8y) + 6(-12z)$
 $= (-9x) + 6(-12z)$
 $= -3(2x) - 3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -3(-16)$
 $= -$

Two terms can be added or subtracted only if they are *like* terms.

5y + 6y = (5+6)y = 11yExample:

using the distributive property

7z - 10z = -3zin one step

We can only combine like terms. We combine terms by adding the coefficients.

5-3=2 3-5=-2 -3-5 = [-8] 3+5=18 - 3+5 = [2] 5 - 3 = D

EX:

5(-3) = -16 3 (-5)= -15 -3(-5) = 153(5) = [15]

EX'' - 0.6x + 1.3x= 0.7x

Simplify by combining like terms.

15.
$$6x + 14x$$

 $= 10x$
 $16. -0.3a + 2b - 1.5a$
 $-0.3a - 1.5a + 2b$
 $-1.8a + 2b$
 $17. 12 - 6x^2 - 8 + x^2$
 $= -6x^2 + x^2 + 12 - 8$
 $= -6x^2 + 1x^2 + 12 - 8$
 $= -5x^2 + 4$
 $3x - 2y + \frac{2}{3}x + \frac{1}{4}y$
 $= 1x + \frac{2}{3}x - 2y + \frac{1}{4}y$
 $= 1x - \frac{2}{3}y - \frac{2}{3}y + \frac{1}{4}y = \frac{1}{14}y$
 $= 1x - \frac{8}{4}y + \frac{1}{4}y = \frac{1}{14}y$

Clear parentheses and combine like terms.

19.
$$3(x+8)-43$$

 $= 3x+24-43$
 $= -36x+60$
 $= -36x+60$
 $= -36x+60$
 $= -36x+31$
 $22. 3(-5y+2)+7(y-4)$
 $= -189+180$
 $= -15y+6x+7y-28$

23.
$$\frac{1}{8}(16x+24) - \frac{3}{4}(2x+12)$$

 $\frac{1}{8}(\frac{16x}{1}) + \frac{1}{8}(\frac{24}{1}) - \frac{3}{4}(\frac{2x}{1}) - \frac{3$

24.
$$5x-3[x+2(3x-6)]$$

 $5x-3[x+2(3x-6)]$
 $5x-3[x+6x-12]$
 $5x-3(7x-12)$
 $= 5x-2(x+36)$
 $= -16x+36$

