Writing an Equation of a Line Using the Point-Slope Formula

Point -Slope Formula: The point-slope formula is given by

$$y - y_1 = m\left(x - x_1\right)$$

where *m* is the slope of the line and (x_1, y_1) is a known point on the line.

For exercises 1 - 4, use the point-slope formula (if possible) to write an equation of the line given the following information.

1. The slope is 5, and the line passes
through the point
$$(-4,3)$$
.
 $M = 5$
 $(x,y_1) = (-4,3)$
 $x_1 = -4$
 $y_1 = 3$
3. The slope is 0, and the line passes
through the point $(7,5)$.
Subth if:
 $Q_1 = 5$
 $Q_2 = 5 \times 120$
 $Q_3 = 5 \times 120$
 $Q_4 = -\frac{2}{3} \times -\frac{2}{3} \left(\frac{4}{3}\right)$
 $Q_4 = -\frac{2}{3} \times +\frac{4}{3}$
 $Q_5 = \frac{2}{3} \times 10^{10}$
 $Q_5 = \frac{2}{3}$
 $Q_5 = \frac{2}{3}$
 $Q_5 = \frac{2}{3}$, and the line passes
through the point $(-0.5, -1.2)$.
 $Q_5 = \frac{2}{3}$
 $Q_5 = \frac{2}{3}$, and the line passes
 $Q_5 = \frac{2}{3}$, and the line passes
 $Q_5 = \frac{2}{3}$, and the line passes
 $Q_5 = -\frac{2}{3} \times -\frac{2}{3} \left(\frac{4}{3}\right)$
 $Q_5 = -\frac{2}{3} \times -\frac{2$

If two points are given: First find the slope from the two given points, then substitute the slope and one point into the point-slope formula.

For exercises 5 and 6, use the point-slope formula to write an equation of the line given the following information.

Writing an Equation of a Line Parallel or Perpendicular to Another Line

For exercises 9 and 10, use the point-slope formula to write an equation of the line given the following information.

9. The line passes through the point (-4,3) and is perpendicular to the line $y = -\frac{1}{2}x + 5$.

Different Forms of Linear Equation: A Summary

A linear equation can be written in several different forms, as summarized in the table below.

Form	Example	Comments
Standard Form $Ax + By = C$	2x - 3y = 5	A and B must not both be zero.
Horizontal Line y = k (k is constant)	<i>y</i> = -3	The slope is zero, and the y-intercept is $(0, k)$.
Vertical Line x = k (k is constant)	<i>x</i> = −1	The slope is undefined, and the <i>x</i> -intercept is $(k, 0)$.
Slope-Intercept Form y = mx + b the slope is m y-intercept $(0,b)$	y = -5x - 6 Slope = -5 y-intercept is (0, -6)	Solving a linear equation for <i>y</i> results in slope-intercept form. The coefficient of the <i>x</i> -term is the slope, and the constant defines the location of the <i>y</i> -intercept.
Point-Slope Formula $y - y_1 = m(x - x_1)$	$m = 5$ $(x_1, y_1) = (-1, 4)$ $y - 4 = 5(x + 1)$	The formula is typically used to build an equation of a line when a point on the line is known and the slope of the line is known.

For exercises 12 - 14, find an equation for the line given the following information.

12. The line passes through the point (1, -2) and is perpendicular to the line x = 5. (*Hint:* Sketch the line first.)

13. The slope is undefined, and the line passes through the point (3,4).

