

Note: To evaluate b^{-n} , take the reciprocal of the base and change the sign of the exponent.

For exercises 7 - 12, simplify.

$$3^{4} = 8!$$

$$3^{3} = 8! + 3 = 27$$

$$3^{2} = 27 + 3 = 9$$

$$3^{1} = 9 + 3 = 3$$

$$3^{0} = 3 + 3 = 1$$

$$E_{X} \cdot \left(\frac{2x}{3}\right)^{1}$$

$$= 4^{4} a^{3} b^{2}$$

$$= \frac{2^{4} x^{-1}}{3^{-1}}$$

$$= \frac{4^{4} a^{-1} b^{-8}}{1}$$

$$= \frac{4^{4} a^{-1} b^{-8}}{1}$$

$$= \frac{2^{5} (a^{1/2})}{b^{8}}$$

$$= \frac{2^{5} (a^{1/2})}{b^{8}}$$

$$= \frac{9!}{16 \times 1}$$

$$I_{N} + his class, we will write all variables with positive expondents only.$$

$$= \frac{4 \times 2^{3} y^{6}}{3' y^{2} \cdot 5^{2}}$$

$$\frac{2 \times 1}{2} \times \frac{\chi}{\sqrt{-8}} \frac{\chi}{y^{9}} \frac{\chi}{z^{-2}} \frac{\chi^{1} \chi}{\chi^{3}} \frac{\chi^{9}}{y^{9}} \frac{z^{2}}{z^{2}}$$

$$= \frac{\chi^{6} \sqrt{2}}{\chi^{3}} \frac{\chi^{9}}{y^{9}}$$

$$= \frac{\chi^{6} \sqrt{2}}{\chi^{3}} \frac{\chi^{9}}{y^{9}}$$

$$= \frac{\chi^{6} \sqrt{2}}{\chi^{3}} \frac{\chi^{9}}{y^{9}}$$

$$= \frac{\chi^{6} \sqrt{2}}{\chi^{3}} \frac{\chi^{9}}{y^{9}}$$

 $\frac{4 \times y^{4} z^{3}}{3.25 y^{2}} = \frac{4 \times y^{4} z^{3}}{75}$

10.
$$(6x)^{-2}$$

 $= (e^{-2}x^{-2})$
 $= \frac{e^{-2}x^{-2}}{1}$
 $= \frac{1}{(e^{-2}x^{-2})}$
 $= \frac{1}{$

13. Simplify and write the answers with positive exponents.

a.
$$a^{-9}$$

 $\frac{a^{-9}}{1} = \boxed{\frac{1}{a^9}}$
b. $\frac{a^2}{a^{11}} = \boxed{\frac{1}{a^9}}$
Nok: $\frac{a^2}{a^{11}} = a^2 = \frac{1}{a^9}$

Properties of Integer Exponents: A Summary

Properties of Integer Exponents		
A ssume that a and b are real numbers $(b \neq 0)$ and that m and n represent integers.		
Property	Example	Detail/Notes
Multiplication of Expressions with Like Bases		
$b^m b^n = b^{m+n}$	$b^2b^6 = b^{2+6} = b^8$	$b^2 b^6 = (b \cdot b) (b \cdot b \cdot b \cdot b \cdot b \cdot b) = b^8$
Division of Expressions with Like Bases		
$\frac{b^m}{b^n} = b^{m-n}$	$\frac{b^7}{b^4} = b^{7-4} = b^3$	$\frac{b^7}{b^4} = \frac{\cancel{b} \cdot \cancel{b} \cdot \cancel{b} \cdot \cancel{b} \cdot \cancel{b} \cdot \cancel{b} \cdot \cancel{b} \cdot \cancel{b}}{\cancel{b} \cdot \cancel{b} \cdot \cancel{b} \cdot \cancel{b}} = b^3$
The Power Rule		
$(b^m)^n = b^{m \cdot n}$	$(b^3)^2 = b^{32} = b^6$	$(b^3)^2 = (b \cdot b \cdot b)(b \cdot b \cdot b) = b^6$
Power of a Product		$(ab)^4 = (ab)(ab)(ab)(ab)$
$(ab)^m = a^m b^m$	$(ab)^4 = a^4b^4$	$= (a \cdot a \cdot a \cdot a)(b \cdot b \cdot b \cdot b) = a^4 b^4$
Power of a Quotient		
$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$	$\left(\frac{a}{b}\right)^3 = \frac{a^3}{b^3}$	$\left(\frac{a}{b}\right)^{3} = \left(\frac{a}{b}\right)\left(\frac{a}{b}\right)\left(\frac{a}{b}\right) = \frac{a \cdot a \cdot a}{b \cdot b \cdot b} = \frac{a^{3}}{b^{3}}$
Definitions		
A ssume that b is a real number $(b \neq 0)$ and that n represents an integer.		
Definition	Example	Details/Notes
b ⁰ = 1	$(3)^0 = 1$	Any nonzero quantity raised to the zero power equals 1.
$b^{-n} = \left(\frac{1}{b}\right)^n = \frac{1}{b^n}$	$b^{-4} = \left(\frac{1}{b}\right)^4 = \frac{1}{b^4}$	To simplify a negative exponent, take the reciprocal of the base and make the exponent positive.

For exercises 14 – 24, simplify the expression. Write the answer with positive exponents only.

.

24. Simplify the expression.

$$2^{-1} + 3 \cdot 8^{-1}$$

$$2^{-1} + 3 \cdot 8^{-1}$$

$$\frac{2^{-1}}{1} + \frac{3 \cdot 8^{-1}}{1}$$

$$= \frac{1}{2^{-1}} + \frac{3}{8^{-1}}$$

$$= \frac{1}{2} + \frac{3}{8}$$

$$= \frac{1}{2} + \frac{3}{8} = \frac{1}{8} + \frac{3}{8} = \frac{1}{8}$$