Addition and Subtraction of Polynomials “m
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Introduction to Polynomials

A polynomial in one variable, x, is defined as a single term or a sum of terms of the form ax", where a is a real
number and the exponent, n, is a nonnegative integer. wovncal et X TX
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For each term ax", a is called the coefficient, and n is called the degree of the term. Lt = &-\
A monomial is a%)olynomlal that has exactly one term.
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A bmomlal is a polynomlal that has exactly two terms. r X
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A trinomial is a polynomial that has exactly three terms. 'S & D)
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The term with highest degree is called the leading term, and its coefficient is called the leading coeffigient. \Mp <
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The degree of a polynomial is the greatest degree of all of its terms.
If a polynomial has more than one variable, the degree of a term is the sum of the exponents of the varlables
contained in the term.

Note: The terms of a polynomial are usually written in descending order according to degree.

1. Write the polynomial in descending order: 8—-10c® +8c* —c® .
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For exercises 2 — 4, categorize the expression as a monomial, a binomial, or a trinomial. Then identify the

coefficient and degree of the leading term.
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Addition of Polynomials

Two terms are like terms if they each have the same variables, and the corresponding variables are raised to the
same powers.

To add polynomials:  Group like terms.
Combine the like terms by adding their coefficients.

5. Explain why the terms 5a and 5a° are not like terms.

o ' vv\o\.;\'dl\
_&\4(7.) I\.Q.N}% 2 l\.—\'

For exercises 6 — 9, add the polynomials.

6. (5a+3b)+(3a-7b) 7. (4% +8x—6)+(—6x" —x+9)
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Subtraction of Polynomials

Opposite of a Polynomial: To find the opposite of a polynomial, take the opposite of each term. This is equivalent

to multiplying the polynomial by

-1.

To Subtract Polynomials: Find the opposite of the polynomial being subtracted.

Combine like terms.

For exercises 10 and 11, find the opposite of each polynomial.
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For exercises 12 — 16, subtract the polynomials.

12. (6a”-5)—(12a+5)
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11. -4x*+3x*-6
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13. 5x°y —(-X"y +2xy +3)
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16. @2w3+3w—6)—(—w3—4w2+3w+8)+(w2—7w+1)
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Polynomials and Applications to Geometry

18. If the perimeter of the figure can be represented by the polynomial 3t* —7t+1, find a polynomial that
represents the length of the missing side.

t> —5t+6
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