Solving Equations Using the Zero Product Rule l Section 6.7 \

Definition of a Quadratic Equation.

A linear equation in one variable is an equation of the form ax+b=c¢c (a * O) .

A linear equation in one variable is sometimes called a first-degree polynomial equation because the highest degree
of all its terms is 1.

A second-degree polynomial equation in one variable is called a quadratic equation.

A Quadratic Equation in One Variable

If a, b, and c are real numbers such that a # 0,

then a quadratic equation is an equation that can SLT Q,V\M‘& %) 8%
be written in the form
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For exercises 1 — 3, identify the equation as linear, quadratic, or neither.
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Zero Product Rule

One method for solving a quadratic equation is to factor and apply the zero product rule.
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The zero product rule states that if the product of two factors is zero, then one or both of its factors is zero.

Zero Product Rule If ab=0,then a=0 or b=0. C\Dojﬁ\\ CO"&() oo ‘7$:\0(y \4\9— O>
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Note: The zero product rule can be used to solve higher degree polynomial equations provided the equations can be
set to zero and written in factored form. N \ codd  rawrde Fhais o (b ud‘(tm .
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5. (2x-1)(4x+5)=0

For exercises 4 — 7, solve the equations using the zero product rulg?
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Solving Equations by Factoring

X(5x=9)=0
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Solving a Quadratic Equation by Factoring

Step 1 Write the equation in the form: ax’ +bx+c=0
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Step 2 Factor the quadratic expression completely.

Step 3 Apply the zero product rule. That is, set each factor

equal to zero, and solve the resulting equations.
Note: The solution(s) found in step 3 may be checked by
substitution in the original equation.

Important: The zero product rule can be used to solve higher degree polynomial equations provided the equations

can be set to zero and written in factored form.

For exercises 8 — 21, solve the equatlons \O‘D ) ‘2} *362\ 5,2 :8L/
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