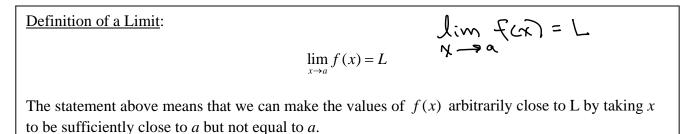
1.2: Finding Limits Graphically and Numerically

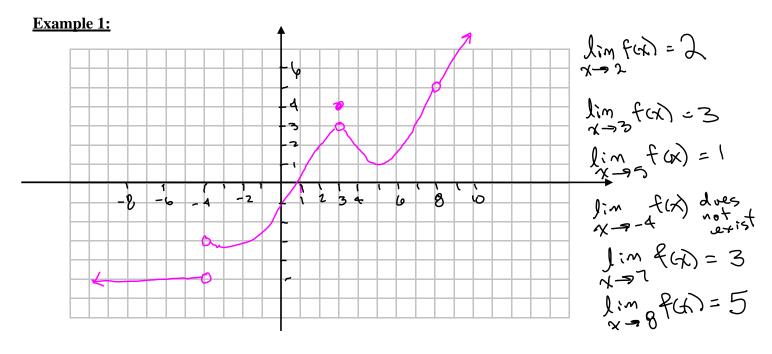
Limit of a function:

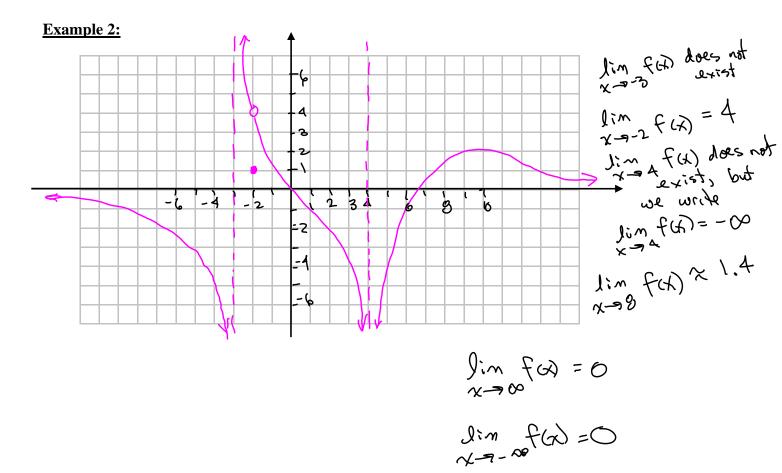


We read this as "the limit of f(x), as x approaches a, is equal to L."

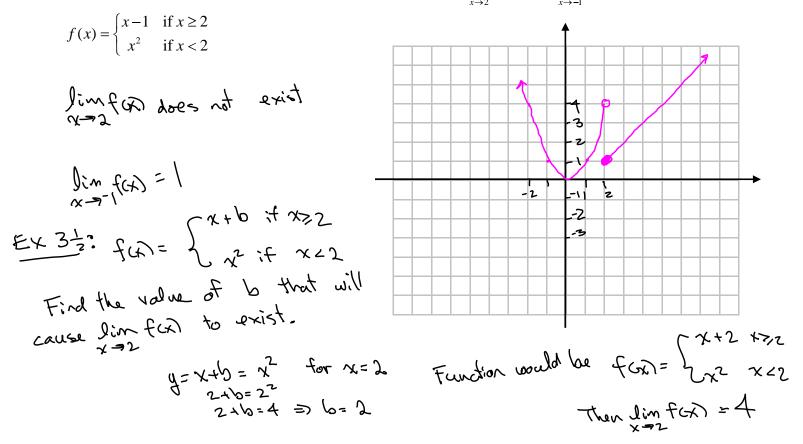
Alternative notation: $f(x) \rightarrow L$ as $x \rightarrow a$. (f(x) approaches L as x approaches a)

Finding limits from a graph:





Example 3: Graph the function. Use the graph to determine $\lim_{x \to 2} f(x)$ and $\lim_{x \to -1} f(x)$.



Finding limits numerically:

Example 4: For the function $f(x) = \frac{x-5}{x^2-25}$, make a table of function values corresponding to values of x near 5. Use the table to estimate the value of $\lim_{x\to 5} \frac{x-5}{x^2-25}$. Use the table to estimate the value of $\lim_{x\to 5} \frac{x-5}{x^2-25}$. 4.8 = 0.10204 4.9 = 0.1001 4.99 = 0.1001 4.99 = 0.1001 4.99 = 0.1001 4.99 = 0.1001

From table,

$$\lim_{\chi \to 5} \frac{\chi - 5}{\chi^2 - 25} = 0.1$$

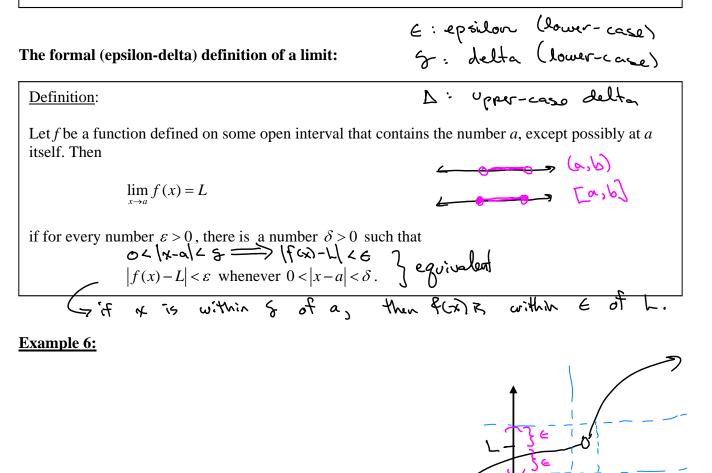
Example 5: Make a table of values and use it to estimate $\lim_{x \to 0} \sin\left(\frac{1}{x}\right)$.

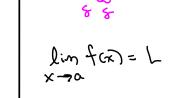
<u>Common reasons</u> $\lim_{x \to c} f(x)$ may not exist:

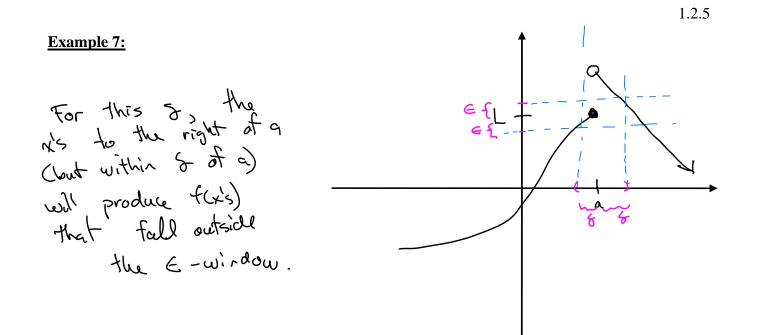
1. f(x) approaches a different value when approached from the left of *c*, compared to when approached from the right of *c*.

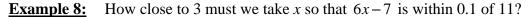
2. f(x) increases or decreases without bound as x approaches c.

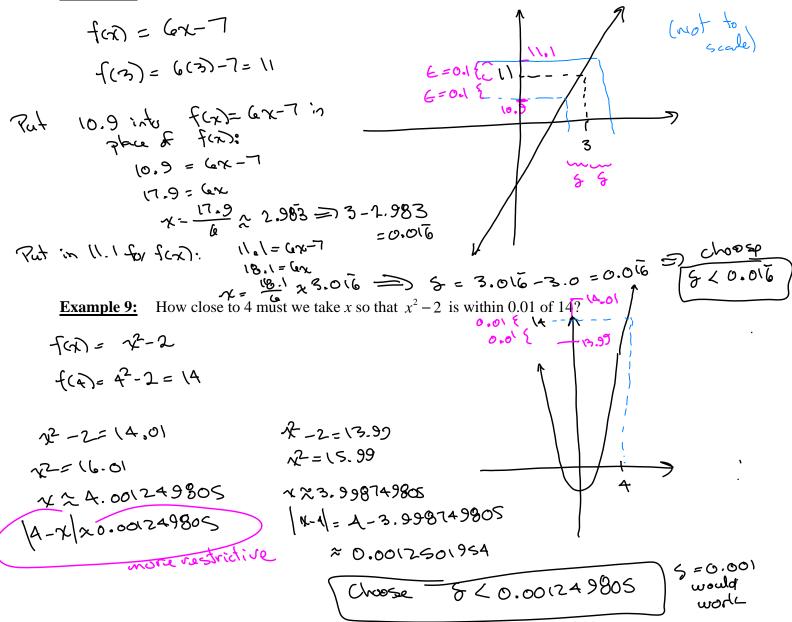
3. f(x) oscillates between two values as x approaches c.











Example 10: Prove that $\lim_{x\to 4} (2x-5) = 3$ using the definition of a limit.

Scratchwork
Let
$$\in 20$$
.
(Take any positive e)
We want
 $[f(x) - 1] \angle e$
 $[f(x) - 2] \angle e$
 $[f(x) - 1] \angle e$
 $[f(x) - 2] \angle e$
 $[f(x) - 1] \angle e$
 $[f(x) - 2] \angle e$
 $[f(x)$

Example 12: Prove that $\lim_{x\to 3} x^2 = 9$ using the definition of a limit.

Example 13: Prove that $\lim_{x\to 2} (x^2 - x + 6) = 8$ using the definition of a limit.

