$f(x) = x = 1 \times +6$

= 0

fax)=c

١

۵

5

L = C

50

C

lin

1-90

lin 7 Naa

a

1.3: Evaluating Limits Analytically

Some basic limits:

Example 1: Determine
$$\lim_{x \to a} x$$
. $\lim_{x \to a} x$
Write as a function: $f(x) = x$
 $\frac{x}{f(x) = x}$
 $\frac{x}{a \pm 0.01} = \frac{1}{a \pm 0.01}$
 $a \pm 0.001 = \frac{1}{a \pm 0.001}$
 $a \pm 0.0001 = \frac{1}{a \pm 0.001}$
Example 2: Determine $\lim_{x \to a} c$. $\lim_{x \to a} c = \frac{1}{x}$
 $(c = \frac{1}{2} + \frac{1}{2}$

Limit Laws:

Suppose that the limits
$$\lim_{x \to a} f(x)$$
 and $\lim_{x \to a} g(x)$ exist. Then
1. $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
2. $\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$
3. $\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$ if *c* is a constant
4. $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$
5. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ if $\lim_{x \to a} g(x) \neq 0$
6. $\lim_{x \to a} [f(x)]^{n/p} = [\lim_{x \to a} f(x)]^{n/p}$, if *n* and *p* are integers with no common factor, $p \neq 0$, and provided that $[\lim_{x \to a} f(x)]^{n/p}$ is a real number.

Combining the facts that $\lim_{x\to a} c = c$, $\lim_{x\to a} x = a$, and the limit laws shows that $\lim_{x\to a} x^n = a^n$ where *n* is a positive integer. This lets us use direct substitution for evaluating limits of polynomials.

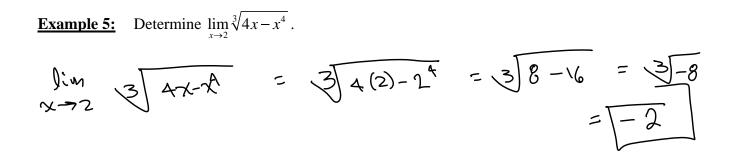
Direct Substitution Property:

If f is a polynomial or a rational function and a is in the domain of f, then $\lim_{x \to a} f(x) = f(a)$.

Example 3: Determine $\lim_{x \to 3} (4x^2 - 2x + 1)$.

$$\lim_{x \to 3} (4x^2 - 2x + 1) = 4(3)^2 - 2(3) + 1 = 36 - 6 + 1 = 131$$

Example 4: Determine $\lim_{x \to -2} \frac{2x^2 - 6x + 5}{x - 3}$. $\lim_{x \to -2} \frac{2x^2 - 6x + 5}{x - 3} = \frac{2(-2)^2 - 6(-2) + 5}{-2 - 3} = \frac{8 + 12 + 5}{-5} = \frac{25}{-5} = \frac{-5}{-5}$



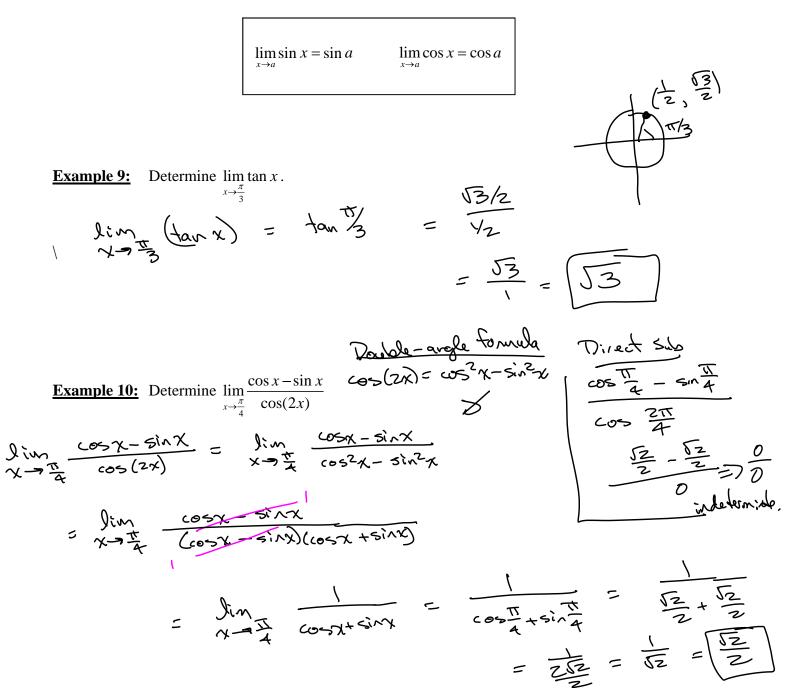
1.3.3

Limit Law #6 (used in the previous example) is a special case of the following theorem:

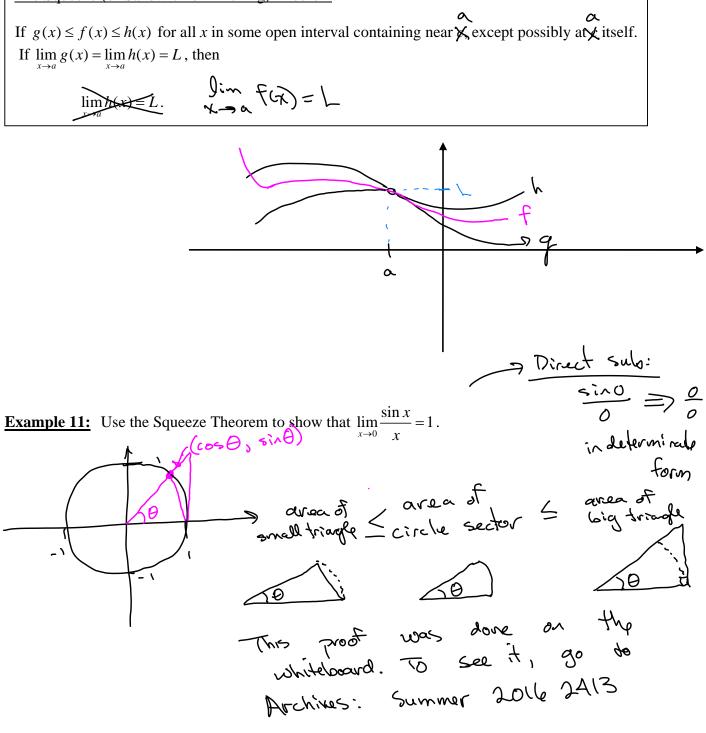
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Limit of a Composite Function} \\ \text{If f and g are functions such that } \lim_{x \to u} g(x) = L \text{ and } \lim_{x \to L} f(x) = f(L) \\ \\ \begin{array}{c} \lim_{x \to u} f(g(x)) = f\left(\lim_{x \to u} g(x)\right) = f(L) \end{array} \end{array}$$

Example 8: Determine
$$\lim_{x\to 3} \frac{x+4}{x-3}$$
.
Skip for now:
this limit $\frac{3+4}{3-3} = \frac{7}{0}$ not
does not
 $\frac{3}{2} + \frac{3}{2} = \frac{7}{0}$ not
indether
indether
triss limit days not
exist. More on
this in a later section.

These can also be evaluated through direct substitution, thanks to the two limits below, along with the limit laws.



The Squeeze (or Sandwich or Pinching) Theorem:



Two important limits:

$$\begin{array}{c}
 13.6
 \end{array}$$

$$\begin{array}{c}
 10.6
 \end{array}$$

$$\begin{array}{c}
 13.6
 \end{array}$$

$$\begin{array}{c}
 13.6$$

$$\begin{array}{c}
 13.6
 \end{array}$$

$$\begin{array}{c}
 13.6
 \end{array}$$

$$\begin{array}{c}
 13.6
 \end{array}$$

$$\begin{array}{c}
 13.6$$

$$\begin{array}{c}
 13.6
 \end{array}$$

$$\begin{array}{c}
 13.6$$

$$\begin{array}{c}
 10.6
 \end{array}$$

$$\begin{array}{c}
 0.6$$

$$\begin{array}{c}
 0.6
 \end{array}$$

$$\begin{array}{c}
 0.6$$

$$\begin{array}{c}
 0.6
 \end{array}$$

$$\begin{array}{c}
 0.6$$

$$\begin{array}{c}
 0.6
 \end{array}$$

$$\begin{array}{c}
 \end{array}$$

$$\begin{array}{c}
 0.6$$

Example 15:
$$\lim_{n \to \infty} \left(\frac{\sin(3n)}{7\pi}\right)$$

$$\lim_{X \to 0} \left(\frac{\sin(3n)}{7\pi}\right) = \frac{1}{7} \lim_{X \to 0} \left(\frac{\sin(3n)}{7\pi}\right)$$

$$= \frac{1}{7} \lim_{X \to 0} \left(\frac{\sin(3n)}{7\pi}\right) = \frac{1}{7} \lim_{X \to 0} \left(\frac{\sin(3n)}{7\pi}\right)$$

$$= \frac{1}{7} \lim_{X \to 0} \left(\frac{\sin(3n)}{7\pi}\right) = \frac{1}{7} (3) \lim_{X \to 0} \left(\frac{\sin(3n)}{3\pi}\right) = \frac{1}{7} \lim_{X \to 0} \left(\frac{\sin(3n)}{3\pi}\right)$$

$$= \lim_{X \to 0} \frac{\sin(3n)}{9(2\pi)} \left(\frac{\pi}{2}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{2\pi}\right) \left(\frac{\pi}{2}\right) = \frac{1}{7} \lim_{X \to 0} \left(\frac{\sin(3n)}{3\pi}\right)$$

$$= \lim_{X \to 0} \frac{\sin(3n)}{9(2\pi)} \left(\frac{\pi}{2}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{2\pi}\right) \left(\frac{\pi}{2}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{2\pi}\right)$$

$$= \lim_{X \to 0} \frac{\sin(3n)}{9(2\pi)} \left(\frac{\pi}{2}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{2\pi}\right) \left(\frac{\pi}{2}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{2\pi}\right)$$

$$= \lim_{X \to 0} \frac{(\sin(3n)}{(3\pi)} = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)}\right) \left(\frac{1}{2}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{3\pi}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{2\pi}\right)$$

$$= \lim_{X \to 0} \frac{(\sin(3n)}{(3\pi)} = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)}\right) \left(\frac{1}{2}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)}\right)$$

$$= \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)} = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)}\right) \left(\frac{1}{2}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)} = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)}\right) \left(\frac{1}{2}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)} = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)}\right) \left(\frac{1}{2}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)} = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)}\right) \left(\frac{1}{2}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)} = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)}\right) \left(\frac{1}{2}\right) = \lim_{X \to 0} \left(\frac{\sin(3n)}{(3\pi)} = \lim_{X \to$$

S

<

$$\frac{F_{X}}{F_{X}} = \frac{18}{18} \operatorname{confd}^{1};$$

$$= \cos(3(0)) \cdot \lim_{X \to 0} \left[\frac{x}{5^{1} \sqrt{3}x} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right] \cdot \lim_{X \to 0} \left[\frac{\sin 8x}{\sqrt{8}} \begin{pmatrix} 0 \\ 8 \end{pmatrix} \right]$$

$$= \cos(0) \cdot \frac{1}{3} \lim_{X \to 0} \left[\frac{3x}{5^{1} \sqrt{3}x} \right] \cdot \frac{8}{1} \cdot \lim_{X \to 0} \left[\frac{\sin 8x}{8x} \right]$$

$$= \left[\cdot \frac{1}{3} \cdot \lim_{3 \to \infty} \left[\frac{3x}{5^{1} \sqrt{3}x} \right] \cdot \frac{8}{1} \cdot \frac{1}{3} \cdot \frac{8}{3} \operatorname{confd}^{1} \frac{3x}{3} \operatorname{confd}$$