4.1: Antiderivatives and Indefinite Integration

<u>Definition</u>: An *antiderivative* of *f* is a function whose derivative is *f*.

i.e. A function *F* is an antiderivative of *f* if F'(x) = f(x).

Example 1: $F(x) = x^3 + 5x$ is an antiderivative of $f(x) = 3x^2 + 5$. because $F'(x) = 3x^2 + 5$.

What are some more antiderivatives of $f(x) = 3x^2 + 5$?

$$G(R) = x^3 + 5x + 7$$

 $H(x) = x^3 + 5x - 12$
or any constant C: $H_c(x) = x^3 + 5x + C$

So we have a whole "family" of antiderivatives of *f*.

<u>Definition</u>: A function *F* is called an antiderivative of *f* on an interval *I* if F'(x) = f(x) for all *x* in *I*.

<u>Theorem</u>: If F is an antiderivative of f on an interval I, then all antiderivatives of f on I will be of the form

F(x) + C

where *C* is an arbitrary constant.

Example 2: Find the general form of the antiderivatives of $f(x) = 3x^2 + 5$.

Example 3: Find the general form of the antiderivatives of $f(x) = 6x^5 + \cos x$.

Check:
$$\mp'(\chi) = (e_{\chi} + c_{\chi} + c_{\chi})$$

= $(e_{\chi} + c_{\chi} + c_{\chi})$

Integration:

Integration is the process of finding antiderivatives.

Rules for Finding Antiderivatives:

Power rule	Function	Antiderivative
	k	kx + c
	kf(x)	kF(x)
	f(x) + g(x)	F(x) + G(x)
	x^n for $n \neq -1$	x^{n+1}
		$\overline{n+1}$
	$\cos x$	sin x
	sin x	$-\cos x$
	$\sec^2 x$	tan x
	$\sec x \tan x$	sec x

Notation in this table: F is an antiderivative of f, G is an antiderivative of g,

1.
$$\int k \, dx = kx + c$$
 (k a constant)
2. $\int x^{a} dx = \frac{x^{a+1}}{n+1} + c$ ($n \neq -1$) $\int x^{a} \, dx = \frac{x^{n+1}}{n+1} + c$
3. $\int k f(x) \, dx = k \int f(x) \, dx$ (k a constant) [Usile:
4. $\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx \frac{d}{dx} (\tan x) = \sec^{2} x \Rightarrow \int \sec^{2} x \, dx = \tan x + c$
5. $\int \cos x \, dx = \sin x + c$ $\frac{d}{dx} (\sec x) = \sec x + \tan x$
6. $\int \sin x \, dx = -\cos x + c$ $\frac{d}{dx} (\cosh x) = -\csc^{2} x \Rightarrow \int \sec x - \tan x dx = \sec x - c$
7. $\int \sec^{2} x \, dx = \tan x + c$ $\Rightarrow \int \csc^{2} x = -\cot^{2} x + c$
8. $\int \sec x \tan x \, dx = \sec x + c$ $\frac{d}{dx} (\cosh x) = -\csc x \cdot \cot^{2} x$
9. $\int \csc^{2} x \, dx = \tan x + c$ $\Rightarrow \int \csc^{2} x - \cot^{2} x = -\cot^{2} x + c$
8. $\int \sec x \tan x \, dx = \sec x + c$ $\frac{d}{dx} (\cosh x) = -\csc x \cdot \cot^{2} x$
9. $\int \csc^{2} x \, dx = -\cosh^{2} x - c$
10. $\int \frac{1}{2} dx = \int \frac{1}{2} x + c$

4.1.4

Example 8: Find
$$\int x^3 dx$$
.

$$\int \frac{3}{7} dx = \frac{x^{3+1}}{3+1} + C = \boxed{\frac{x^4}{4}} + C$$

$$Check: \frac{d}{dx} \left(\frac{x^1}{4} + C\right) = \frac{d}{dx} \left(\frac{1}{4}x^4 + C\right) = \frac{1}{4} \left(4x^3\right) + 0 = x^3$$

$$Example 9: \text{ Find } \int 7x^2 dx.$$

$$\frac{\text{ample 9:}}{\int \sqrt{2} \, dx} = 7 \quad \int \sqrt{2} \, dx = 7 \quad \frac{\sqrt{3}}{3} + c = \left[\frac{-1 \, \sqrt{3}}{3} + c \right]$$

$$\frac{\sqrt{2} \, dx}{\sqrt{2} \, dx} = 7 \quad \int \sqrt{2} \, dx = 7 \quad \frac{\sqrt{3}}{3} + c = \left[\frac{-1 \, \sqrt{3}}{3} + c \right]$$

$$\frac{\sqrt{2} \, dx}{\sqrt{2} \, dx} = \frac{-1 \, \sqrt{3}}{3} + \frac{-1 \, \sqrt{3$$

Example 10: Find
$$\int \frac{1}{x^5} dx$$
.
 $\int \frac{1}{\chi^5} dx = \int \frac{-5}{\chi^5} dx = \frac{-5}{-5+1} + c = \frac{-4}{-4} + c = -\frac{1}{-4\chi^4} + c$
Check: $\frac{d}{d\chi} \left(-\frac{1}{4} \chi^4 \right) = -\frac{1}{4} \left(-4\chi^5 \right) = \frac{4}{4} \chi^5 = \frac{1}{\chi^5}$

Example 11: Find the general antiderivative of
$$f(x) = \frac{5}{x^2}$$
.
 $F(x) = \int \frac{5}{x^2} dx = \int 5x^2 dx = 5 \int x^2 dx = 5 \cdot \frac{x^{-2+1}}{-2+1} + c$
 $= \frac{5x}{-1} + c = -\frac{5}{x} + c$
 $F(x) = -\frac{5}{x} + c$
 F

$$\int (6x^2 - 3x + 9) dx = \frac{6x^3}{3} - \frac{3x^2}{2} + 9x + c$$

= $\left[2x^3 - \frac{3}{2}x^2 + 9x + c\right]$ there it

Example 13: Find
$$\int 3\sqrt{x} \, dx$$
.
 $\int 3\sqrt{x} \, dx_{x} = 3 \int x^{\frac{1}{2}} \, dx_{x} = 3 \cdot \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + c = 3 \cdot \frac{x}{\frac{3}{2}} + c$
Check $\int \frac{d}{dx_{x}} \left(2x^{\frac{3}{2}} + c\right) = 3 \cdot \frac{2}{3} \cdot \frac{2}{3} x^{\frac{3}{2}} + c = 2x + c = 2\sqrt{x^{\frac{3}{2}}} + c$
 $2 \cdot \frac{3}{2} x^{\frac{1}{2}} = 3x^{\frac{1}{2}}$

4.1.5

Example 14: Find
$$\int (3\cos x + 5\sin x) dx$$
.

$$\int (3\cos x + 5\sin x) dx = 3 \int \cos x dx + 5 \int \sin x dx$$

$$= 3(\sin x + c) + 5 (-c \cos x + 5c_2)$$

$$= 3\sin x + 3c_1 - 5\cos x + 5c_2 = 3\sin x - 5\cos x + 3c_1 + 5c_2$$

$$= 3\sin x - 5\cos x + 5c_2 = 3\sin x - 5\cos x + 3c_1 + 5c_2$$

$$= 3\sin x - 5\cos x + c$$

$$\int (\frac{x^2 - \sqrt{x^3 + 3x^2}}{x^5} dx)$$

$$= \int (\frac{x^2}{\sqrt{5}} - \frac{x^{43}}{x^5} + \frac{3x^2}{x^5}) dx$$

$$= \int (\frac{x^2 - \sqrt{x^3 + 3x^2}}{x^5} + \frac{3x^2}{x^5}) dx$$

$$= \int (\frac{x^2 - \sqrt{x^3 + 3x^2}}{x^5} + \frac{3x^2}{x^5}) dx$$

$$= \int (\frac{x^2 - \sqrt{x^3 + 3x^2}}{x^5} + \frac{3x^2}{x^5}) dx$$

$$= \int (\frac{x^2 - \sqrt{x^3 + 3x^2}}{x^5} + \frac{3x^2}{x^5}) dx$$

$$= \int (\frac{x^2 - \sqrt{x^3 + 3x^2}}{x^5} + \frac{3x^2}{x^5}) dx$$

$$= \int (\frac{x^2 - \sqrt{x^3 + 3x^2}}{x^5} + \frac{3x^2}{x^5}) dx$$

$$= \int (\frac{x^2 - \sqrt{x^3 + 3x^2}}{x^5} + \frac{3x^2}{x^5}) dx$$

$$= \int (\frac{x^2 - \sqrt{x^3 + 3x^2}}{x^5} + \frac{3x^2}{x^5}) dx$$

Example 17:
$$\int \left(\sqrt[3]{x} + \frac{2}{\sqrt{x}}\right) dx$$

Example 18:
$$\int (6y^2 - 2)(8y + 5) dy$$

 $\int (48y^3 + 30y^2 - 16y - 10) dy$

Differential equations:

A *differential equation* is an equation involving the derivative of a function. To solve a differential equation means to find the original function.

An *initial value problem* is a common type of differential equation in which a derivative and an initial condition are given.

Example 19: Given $f'(x) = x^2 - 7$, find f. This is an example of a differential equation.

$$f(x) = \int f'(x) dx = \int (x^2 - 1) dx = \frac{x^3}{3} - \frac{7x + c}{7x + c}$$

$$f(x) = \int f'(x) dx = \int (x^2 - 1) dx = \frac{x^3}{3} - \frac{7x + c}{7x + c}$$

$$f(x) = \frac{x^3}{3} - 7x + c$$

$$f(x) = \frac{x^3}{3} - 7x + c$$

Example 20: Suppose that
$$f'(x) = 3x^2 + 2\cos x$$
 and $f(0) = 3$. Find $f(x)$.
 $f(0) = 3$ is called an initial condition. We use this to find the c.
 $f(x) = \int f'(x) dx = \int (3x^2 + 2\cos x) dx = 3 \cdot \frac{x^3}{3} + 2\sin x + c$
 $= x^3 + 2\sin x + c$
Use the initial condition to find C:
 W_{e} have $f(x) = x^2 + 2\sin x + c$
 $f(0) = 3 \implies f(0) = 0^2 + 2\sin(0) + c = 3$. Solve for C:
 $0 + c = 3$
 $c = 3$
Solution is: $f(x) = x^2 + 2\sin x + 3$
 $check d: f'(x) = 3x^2 + 2\cos x + 0$ or.
 $f(0) = 0^2 + 2\sin(0) + 3 = 0 + 3 = 3\sqrt{0}x$

4.1.7
Example 21: Suppose that
$$f''(x) = 2x^3 - 6x^2 + 6x$$
, $f'(2) = -1$, and $f(-1) = 4$. Find $f(x)$.
 $f''(x) = 2-x^2 - (x^2 + 6x)$
 $f'(x) = 2x^3 - (x^2 + 6x) dx$
 $= 2x^4 - (x^3 + 6x^2 + c_1) = \frac{1}{2}(x^4 - 2x^3 + 3x^2 + c_1)$
 $f'(x) = -1 \Rightarrow f'(x) = \frac{1}{2}(x^3 - 2x^3 + 3x^2 - 5)$
 $f'(x) = -1 \Rightarrow f'(x) = \frac{1}{2}(x^3 - 2x^3 + 3x^2 - 5)$
 $f(x) = \int f'(x) dx = \int (\frac{1}{2}x^4 - 2x^3 + 3x^2 - 5) dx = \frac{1}{2} \cdot \frac{x^5}{5} - 2x^4 + x^3 - 5x + C_2$
 $f'(x) = \frac{1}{2}(x^5 - 2x^3 + 3x^2 - 5) dx = \frac{1}{2} \cdot \frac{x^5}{5} - 2x^4 + x^3 - 5x + C_2$
 $f(x) = \int f'(x) dx = \int (\frac{1}{2}(-x^5) - \frac{1}{2}(-x^5) + (-x^3 + 3x^2 - 5) dx = \frac{1}{2}(-x^5 - \frac{1}{2}x^4 + x^3 - 5x + C_2)$
 $f'(x) = \frac{1}{2}(-x^5) - \frac{1}{2}(-x^5) + (-x^3 - 5x - \frac{1}{2}x^5 - \frac{1}{2}x^5 + \frac{1}{2}x^5 - \frac{1}{2}x^5 -$

Velocity and acceleration (rectilinear motion):

We already know that if f(t) is the position of an object at time t, then f'(t) is its velocity and f''(t) is its acceleration.

<u>Note</u>: Acceleration due to gravity near the earth's surface is approximately 9.8 m/s^2 or 32 ft/s^2 .

Example 23: Suppose a particle's velocity is given by $v(t) = 2\sin t + \cos t$ and its initial position is s(0) = 3. Find the position function of the particle.

$$\Delta(t) = \int v(t) dt = \int (2 \sin t + \cos t) dt$$

$$= \Im(-\cos t) + \sin t + c$$

$$= -2 \cos t + \sin t + c$$

$$\Delta(0) = 3 \Longrightarrow \Delta(0) = -2 \cos(0) + \sin 0 + c = 3$$

$$-2(1) + 0 + c = 3$$

$$-2 + c = 3$$

$$C = 5$$
Position function is $\Delta(t) = -2 \cos t + \sin t + 5$
Example 24: Suppose a ball is thrown upward from a 30-foot bridge over a river at an initial velocity of 40 feet per second. How high does it go? When does it hit the water?
$$\Delta(t) = p^{-\alpha_1 + 1} M \qquad (-32 + 1/s^2)$$

$$\Delta(t) = \int (-32) dt = -32t + C_1$$

Find $c_i: A'(0) = 40 \implies A'(0) = -32(0) + C_1 = 40$ $c_1 = 40$

$$(1) = -32t + 40$$

$$\Delta(t) = \int \Delta'(t) dt = \int (-32t + 4) dt = -32t^{2} + 40t + (z)$$

$$= -(6t^{2} + 40t + 6)$$

$$\Delta(0) = 30 \Rightarrow \Delta(0) = -(66t^{2} + 40t + 6)$$

$$(2 = 30)$$

$$(2 = 30)$$

Note: For acceleration due to gravity of and initial hereful to,
and initial velocity No,
the position of an object in freehold (neglect air resistered)
is
$$[h(t) = -\frac{1}{2} gt^2 + V_0 t + h_0]$$

How high does if go?
When does it but the weak?
At max hereful: $h'(t) = 0$ (velocity = 0)
 $-32t + 40 = 0$
 $a_0 = 32t$
 $t = \frac{40}{52} = \frac{5}{4} = 1.15$ sec
max height is $h(t) = 0$ (velocity = 0)
 $-32t + 40 = 0$
 $a_0 = 32t$
 $t = 40 = 0$
 $a_0 = 32t$
 $t = \frac{40}{52} = \frac{5}{4} = 1.15$ sec
Men it hits the weaks $h(t) = 0$:
 $-16t^2 + 40t + 30 = 0$
Quadwatic formula:
 $t = -\frac{40t}{160} \frac{160^2 - 4(-16)(30}{2(-16)}$
 $\approx \frac{20 \pm 1800}{16} \approx 3.104$ sec, -0.604 sec
We want 3.104 seconds.