5.11

5.1: The Natural Logarithmic Function: Differentiation

An algebraic approach to logarithms:

Definition: log, X =y is equivalentto b’ = x.

The functions f(x)=b* and g(x) =log, x are inverses of each other.

b is called the base of the logarithm.

The logarithm of base e is called the natural logarithm, which is abbreviated “In”.

The natural logarithm:

Inx =log, X.

Therefore Inx =y is equivalent to €’ = x and the functions f(x)=¢e* and g(x) =Inx are
inverses of each other.

A calculus approach to the natural logarithm:

The natural logarithm function is defined as LA p\s
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\

Inx=jlx%dt, x>0.
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For x>1, Inx can be interpreted as the area under the graph of y :% fromt=1to t=x.



Note: The integral is not defined for x <0.

For x=1, Inx:f%dtzo.
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5.1.2

Recall: The Fundamental Theorem of Calculus, Part I1:

g(x)=LXf(t)dt, a<x<b

Let f be continuous on the interval [a,b]. Then the function g defined by

is continuous on [a,b] and differentiable on (a,b), and g'(x) = f(x).

Apply the Fundamental Theorem of Calculus to the function f(t) =
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This means that i(In X) -1
dx X

The Derivative of the Natural Logarithmic Function
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Laws of Logarithms:

If x and y are positive numbers and r is a rational number, then:

1 In(xy)=Inx+Iny

2. In(§]=lnx—lny
y

Note: This also gives us In[lj =-Inx.
X

3. In(xr):rlnx
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The graph of y=Inx:
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It can be shown that limIn X =c and that lim =—co. Jwt= X
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For x>0, ﬂ:£>0 so y=Inx isincreasing on (0,).
\ dx X
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A AaAd. For x>0, ™ _—7<0 so y=Inx is concave down on (0,).
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Because In1=0 and y =Inx is increasing to arbitrarily large values (Iim Inx = oo), the

X—0

Intermediate VValue Theorem guarantees that there is a number x such that Inx =1. That number
is called e.

e~ 2.71828182845904523536

(e is in irrational number—it cannot be written as a decimal that ends or repeats.)
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Example 2: Find — for y =In(2x> +3x) . =% - 4
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Example 3: Determine %(In(cosx)).
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Example 4: Flnd the derivative of f(x)= nlx
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Example 5:  Find the derivative of f(x)=x*Inx.
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Example 6: Find the derivative of y = IZ—X .
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Example 7: Find the derivative of g(t) =In(7t).
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Example 8: Determine the derivative of f(x)= In6x
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Logarithmic differentiation:

To differentiate y = f(x):
1. Take the natural logarithm of both sides.
2. Use the laws of logarithms to expand.

3. Differentiate implicitly with respect to x.

4. Solve for ﬂ

dx

5.15




Example 9:

Example 10:

5.1.6

Use logarithmic differentiation to find the derivative of

y= (X +2) (2x+l) (6X l)
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