7.1: Area of a Region Between Two Curves

Because the definite integral represents the "net" area under a curve, we can use integration to find the area between curves.

If f and g are continuous and $f(x) \ge g(x)$ on [a,b], then the area between y = f(x), y = g(x), and the lines x = a and x = b is given by

Area =
$$\int_{a}^{b} [f(x) - g(x)] dx$$

Example 1: Find the area of the region bounded by
$$f(x) = x^{2} - 1$$
 and the lines $y = 0, x = -2$,
and $x = 4$.
Find Therefore, $p(x) = x^{2} - 1$ and $y = 0$
Set $y(x) = x^{2} - 1$ and $y = 0$
Set $y(x) = x^{2} - 1$ and $y = 0$
 $x^{2} = 1$
 $x = 2[T = 1 - 56$ independing
 $x = -1^{1}(x^{2} - 1)dx$
 $x = (x^{2} - x)[\frac{1}{x} - \frac{1}{x} - \frac{$

Example 4: Find the area of the region completely enclosed by the graphs of $y = x^3$ and y = x.

7.1.3

Example 5: Find the area of the region completely enclosed by the graphs of $x = y^2$ and x = 4.

Example 6: Find the area of the region completely enclosed by the graphs of $x=3-y^2$ and x=y+1. y=x-1 $y=y^2+y-2$ y=x-1 y=x-2 y=x-1 y=x-2 y=x-1 y=x-2 y=x-2y=x-