

 $M = \frac{r_{1SC}}{r_{4n}} = \frac{2}{30} = \frac{1}{15}$

Slope Formula

The slope of a line is often symbolized by the letter m.

The slope of a line passing through the distinct points (x_1, y_1) and (x_2, y_2) is

When you apply the slope formula, you will see that the slope of a line is

- · positive if the line increases, or rises, from left to right.
- negative if the line decreases, or falls, from left to right.
- zero if the line is horizontal.
- undefined if the line is vertical.

For exercises 4 and 5, determine the slope by using the slope formula and any two points on the line. Check your answer by drawing a right triangle and labeling the "rise" and "run".

Parallel and Perpendicular Lines

Parallel lines: Lines in the same plane that do not intersect.

Slopes of parallel lines: If m_1 and m_2 represent the slopes of two parallel (nonvertical) lines, then $m_1 = m_2$.

Parallel lines have the same slope and different y-intercepts.

Perpendicular lines: Lines that intersect at a right angle.

Slopes of perpendicular line: If $m_1 \neq 0$ and $m_2 \neq 0$ represent the slopes of two perpendicular lines, then

$$m_1 = -\frac{1}{m_2}$$
 or equivalently, $m_1 m_2 = -1$

If two lines are perpendicular then the slope of one line is the *opposite of the reciprocal* of the slope of the other line (provided neither line is vertical)

For exercises 10 - 12, the slope of the line is given.

- a. Determine the slope of a line parallel to the given line.
- b. Determine the slope of a line perpendicular to the given line.

10. $m = -3$	11. The slope is undefined	12. $m = \frac{1}{8}$
--------------	----------------------------	-----------------------

For exercises 13 - 15, let m_1 and m_2 represent the slopes of two lines. Determine if the lines are parallel, perpendicular or neither.

13.
$$m_1 = 4, m_2 = -\frac{1}{4}$$
 14. $m_1 = 2, m_2 = \frac{8}{4}$ 15. $m_1 = \frac{2}{3}, m_2 = \frac{3}{2}$

For exercises 16 and 17 find the slopes of the lines l_1 and l_2 defined by the two given points. Then determine whether l_1 and l_2 are parallel, perpendicular, or neither.

16. $l_1 : (3,6)$ and (-2,16)17. $l_1 : (1,7)$ and (3,10) $l_2 : (-3,-10)$ and (-2,-12) $l_2 : (-4,10)$ and (-7,12)