4.5: Conditional Probability

Conditional probability:

Consider the probability that a house will be flooded during a given year. Would you expect this probability to be different if you only considered houses that were located in a 50-year flood plain?

 $=\frac{4}{52},\frac{52}{12}=\frac{4}{12}$

=

17

Example 2: Draw a single card from a standard 52-card deck. What is the probability of drawing the ace of diamonds given that the card is red?

$$S = set af red cards$$

$$n(S) = 2(13) = 26$$
Only 1 are of diamonds, so
$$P(A3|R) = \boxed{26}$$

Example 3: In a test conducted by the U.S. Army, it was found that of 1000 new recruits, 680 men and 320 women, 57 of the men and 3 of the women were red-green color-blind. Given that a recruit selected at random from this group is red-green color-blind, what is the probability that the recruit is a male?

$$B: red-green color-billed recruits$$

$$M: men$$

$$P(M|B) = \frac{P(M nB)}{P(B)} = \frac{\frac{57}{1000}}{\frac{57}{1000}} = \frac{57}{60} = \frac{19}{20}$$

$$0R = \frac{57}{60} = \frac{19}{20}$$

Example 4: This table shows the number of adult men and women with diabetes in 2012. <u>http://www.cdc.gov/diabetes/pubs/statsreport14/national-diabetes-report-web.pdf</u> Tables like these are called *contingency tables* or *two-way tables*.

	Diabetics	Non-diabetics	
	(in millions)	(in millions)	Total
Men	15.5	98.5	114.0
Women	13.4	106.2	119.6
Total	28.9	204.7	233.6

- a. What is the probability that a randomly selected adult is diabetic, given that the person is male? $\frac{\sqrt{5.5}}{\sqrt{4}} \approx 0.\sqrt{36}$
- b. What is the probability that a randomly selected adult is diabetic?

c. What is the probability that a randomly selected adult is a diabetic female?

Example 5:

4.142 Living Arrangements. As reported by the U.S. Census Bureau in *America's Families and Living Arrangements*, the living arrangements by age of U.S. citizens 15 years of age and older are as shown in the following joint probability distribution.

		Living arrangement				
		Alone L ₁	With spouse L_2	With others L_3	$P(A_i)$	
Age (yr)	15–24 A ₁	0.006	0.012	0.157	0.175	
	25–44 A ₂	0.030	0.184	0.123	0.337	
	45-64 A3	0.047	0.216	0.067	0.330	
	Over 64 A ₄	0.046	0.088	0.024	0.158	
	$P(L_j)$	0.129	0.500	0.371	1.000	

A U.S. citizen of age 15 or older is selected at random. Determine the probability that the person selected:

- a) lives alone.
- b) is under 45 and lives alone.
- c) is over 64 and does not live with a spouse.
- d) lives alone, given that the person is 45 or older.
- e) What percentage of people over 64 live alone?
- f) What percentage of people living with a spouse are under 25?