5.2: The Mean and Standard Deviation of a Discrete Random Variable

Mean of a discrete random variable:

The Mean (Expected value) of a Discrete Random Variable:

Suppose that a random variable X can take on the *n* values $x_1, x_2, ..., x_n$. Suppose the associated probabilities are $p_1, p_2, ..., p_n$. Then the mean of X is

$$E(X) = \mu = x_1 p_1 + x_2 p_2 + \dots + x_n p_n.$$
 (also called $E(X)$, the expected value)

Suppose an experiment is repeated many times, and the values of X are recorded and then averaged. As the number of repetitions increases, the average value of X will become closer and closer to μ . For that reason, the mean is called the *expected value* of X.

Example 1: A probability distribution is given by the table below. Find the mean (the expected value of *X*).

x	3	4	5	6	7	8	9
P(X = x)	0.15	0.20	0.30	0.12	0.08	0.10	0.05

Suppose that an organization sells 1000 raffle tickets for \$1 each. One ticket is for Example 2: a gift basket worth \$200, and three tickets are for \$50 gift certificates to a restaurant. Find the expected net winnings for a person who buys one ticket.

Example 3: Suppose the yearly premium for a car insurance policy is \$2300 for a customer in a certain category. Statisticians for the insurance company have determined that a person in this category has a 0.007 probability of having an accident that costs the insurance company \$100,000 and a 0.015 probability of having an accident that costs the insurance company \$30,000. What is the expected value of the insurance policy to the customer? To the insurance company?

Let
$$X = net Value to Eusponett.$$

Outcome X $P(x)$
Big accident 100 000-22000 0.007
Small accident 30 000-22000 0.005
No accident -2300 0.005
No accident -2300 1-0.005=0.918
Sun: 1 Vox
Expected value to customeri
 $M = E(X) = 97700(0.007) + 27700(0.005) - 2300(0.978)$
 $= -$1(150)$
Expected Value to the insurance company is opposite in sign:
 $$1(150)$

Standard deviation of a discrete random variable:

The Standard Deviation of a Discrete Random Variable:

Suppose that a random variable X can take on the *n* values $x_1, x_2, ..., x_n$. Suppose the associated probabilities are $p_1, p_2, ..., p_n$. Then the mean of X is

$$\sigma = \sqrt{(x_1 - \mu)^2 p_1 + (x_2 - \mu)^2 p_2 + \dots + (x_n - \mu)^2 p_n}$$

= $\sqrt{\sum_{i=1}^n (x_i - \mu)^2 p_i}$.

x	P(X = x) [sometimes written $P(x)$]	
0	0.11	0(0-17=6
1	0.32	((0-32)=0.32
2	0.43	2(0.43)=0.86 3(0.10)=0.3
3	0.10	3(0,0)=0.3
4	0.04	4 (0.04) = 0 . 16
	Sum: 1	1.64

Example 4: Calculate the mean and standard deviation of the probability distribution.

$$Sum: 1 \qquad I.64$$

$$M = E(X) = O(0.1) + ((0.32) + 2(0.4)) + 3(0.10) + 4(0.04) = (1.64 = M)$$

$$\frac{X - \mu}{0} = (X - \mu)^{2} \qquad P = (X - \mu)^{2} \qquad P$$

Example 5: Use the frequencies to construct a probability distribution for the random variable X, which represents the number of games bowled by customers at a bowling alley. Calculate the mean and standard deviation of X.

Number of Games	Frequency
1	37
2	45
3	29
4	12
5	4

see next page

Example 5: Use the frequencies to construct a probability distribution for the random variable X, which represents the number of games bowled by customers at a bowling alley. Calculate the mean and standard deviation of X.

Number of Games	Frequency	Relative Frequency
1	37	37/127
2	45	45/127
3	29	45/127 29/127
4	12	12/127
5	4	4/127

N= 127

we use the relative frequencies to assign the probabilities in our probability distribution:

the chould	check that the
probabilities	add up to 1)

100

$$\frac{1}{1221} = \frac{1}{1221} + \frac{1}{2} \left(\frac{45}{1221}\right) + \frac{3}{2} \left(\frac{29}{1221}\right) + 4 \left(\frac{12}{1221}\right) + \frac{5}{1221} \left(\frac{4}{1221}\right)$$

$$= \frac{1}{1221} \left(\frac{1}{1221} + 2(45) + \frac{3}{2}(29) + \frac{1}{2}(12) + \frac{5}{2}(4)\right) \qquad [factor out izzz]$$

$$= \frac{1}{1221} \left(\frac{282}{1221}\right) = \frac{282}{1227} \approx 2.2205 \quad \text{a store in calculator, if possible.}$$

$$The mean number of games is 2.2205.$$

$$\frac{x}{2} + \frac{x-\mu}{2} + \frac{(x-\mu)^2}{(x-\mu)^2} + \frac{(x-\mu)^2}{(x-\mu)^2}$$