9.5: Hypothesis Tests for One Population Mean When σ is Unknown

In practice, when we are using a sample to make inferences about the population mean, it is rare for us to know the population standard deviation.

Instead, we must use the sample standard deviation, *s*, as a point estimate of the population standard deviation, σ .

When using s as an estimate for σ , we cannot use a z-test, because $\frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$ is not normally

distributed.

The *t*-test for one population mean:

When using *s* as an estimate for σ , we use the Student *t*-distribution.

In order to use this procedure, we need to know (or be able to reasonably assume) that the variable of interest follows a normal distribution, or we must have a large sample size ($n \ge 30$).

In addition, the sample should be randomly obtained, observations within the sample must be independent of one another. This means that if we have a sample size that is more than 5% of the population, we should multiply the standard error by a finite population correction factor,

 $\sqrt{\frac{N-n}{n-1}}$. (In this class, I do not anticipate that we will encounter this situation.)

Hypothesis Testing for a Population Mean:

<u>Step 1</u>: Determine the significance level α .

Two-Tailed Test (most common)	Left-Tailed Test (rare)	Right-Tailed Test (rare)
$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$
$H_1: \mu \neq \mu_0$	H_1 : $\mu < \mu_0$	$H_1: \mu > \mu_0$
HZ HZ	2 T	
Rejection Region	Rejection Region	Rejection Region

<u>Step 2</u>: Determine the null and alternative hypotheses.

Note: One tailed tests assume that the scenario not listed ($\mu > \mu_0$ for a left-tailed test or $\mu < \mu_0$ for a right-tailed test) is not possible or is of zero interest.

<u>Step 3</u>: Use your α level and hypotheses, sketch the rejection region.

Step 4: Compute the test statistic
$$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$$

Step 5: Use a table (Table IV, on page $\xrightarrow{A=B}$) to determine the <u>critical value for t</u> associated with your rejection region.

<u>Step 6</u>: Determine whether the value of t calculated from your sample (in Step 3) is in the rejection region.

- If *t* is in the rejection region, reject the null hypothesis.
- If *t* is not in the rejection region, do not reject the null hypothesis.

<u>Step 7</u>: State your conclusion.

Example 1: The normal human body temperature is widely accepted to be 98.6° F and can be assumed to follow a normal distribution. A medical researcher wants to know whether a certain geographical community of Native Alaskans has a mean body temperature of 98.6° F. A sample of 20 members of the Native Alaskan geographical community resulted in a mean body temperature of 98.3° F with a standard deviation of 0.7° F. Perform an appropriate hypothesis test at the 95% confidence level.

Example 2: The average amount of lead in the blood of young children is 2 micrograms per deciliter (mcg/dL). A city has recently changed its water supply, and there have been widespread reports of increased lead levels in the water. A concerned doctor wants to dig into the city's medical records to find out whether the children in the city have blood lead levels above the average level of 2 mcg/dL. In a sample of 35 children, she found a mean lead level of 2.60 mcg/dL with a standard deviation of 1.9 mcg/dL. Perform an appropriate hypothesis test at the 95% confidence level.

Ho:
$$M = 2 \max(AL)$$

Ho: $M = 2 \max(AL)$
 $X = 1 - 0.95 = 0.05$
Find critical value of L
From table,
for $df = 34$,
for df

Example 3: Suppose a manufacturer claims on the label that a package contains 8 ounces of potato chips. A customer (or a FDA analyst) buys 50 bags of chips, weighs them on a high-accuracy scale, and obtains a sample mean of 7.89 ounces with a sample standard deviation of 0.2 ounces. Does this sample provide evidence that the manufacturer's labeling may be inaccurate? Use the $\alpha = 0.10$ level of significance.

9.5.4 & Buchmark

inaccurate? Use the
$$\alpha = 0.10$$
 level of significance.
 $\overline{X} = 7.89$

$$A = 0.20$$

$$A = 0.20$$

$$A = 0.40$$

$$A = 0.40$$

$$A = 0.10$$

$$A = 0.00$$

$$A = 0.$$

Example 4: Suppose a manufacturer claims on the label that a package contains 8 ounces of potato chips. Again, a customer (or a FDA analyst) wonders whether the package size is accurate. This time, the analysist only buys 10 bags of chips, and obtains a sample mean of 7.89 ounces with a sample standard deviation of 0.2 ounces. Does this sample provide evidence that the manufacturer's labeling may be inaccurate? Use the $\alpha = 0.10$ level of significance.

$$\frac{dz=0.10}{H_0: \mu=802}$$

$$\frac{H_a: \mu\neq802}{H_a: \mu\neq802}$$
Find critical value of t
$$\frac{dz=0.0}{2}$$

$$\frac$$