Sets.1
Supplement: Basic Set Theory

Definition: A set is a well-defined collection of objects. Each object in a set is called an element of that
set.
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Sets can be finite or infinite.
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Notation: ° ‘e
e We usually use capital letters for sets.
We usually use lower-case letters for elements of a set.
o E A
e aec A means a is an element of the set A.
a¢ A means a is not an element of the set A.
N ¢ AL

The empty set is the set with no elements. It is denoted &. This is sometimes called the null set.

e S= { X| P( X)} means “S is the set of all X such that P(X) is true”. (called rule notation or set
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Example: S ={X]| X is an even positive integer} means S ={2,4,6,8,...}
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e n(A) means the humber of elements in set A.

Definition: We say two sets are equal if they have exactly the same elements.



Sets.2
Subsets:

Definition: If each element of a set A is also an element of set B, we say that A is a subset of B. This is
denoted Ac B or Ac B. If Ais not a subset of B, we write Az B .
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Definition: We say A is a proper subset of B if Ac B but A= B. (In other words, every element of A is
also an element of B, but B contains at least one element that is not in A.)

Note on notation: Some books use the symbol < to indicate a proper subset. Some books use c to
indicate any subset, proper or not.

Or ANINERY
Definition: The set of all elements under consideration is called the universal set, usually denoted U.
Example: If you’re dealing with sets of real numbers, then U is the set of all real numbers. So
“Wednesday” would not be an element of U, but 5.7 would be in U.

Example 1: Consider these sets.

11.2,3,4,5,6} N=C

A=
B={1,2,3,4,5,6,7,8} N € R
C= {1,3,5,2,4, 6}
Neow &R
Note:
e (J isasubset of every set. (i.e. & < A for every set A.) U .x_vw‘blva
e Every setis a subset of itself. (i.e. Ac A for every set A.) !
Example 2: List all subsets of {1,2,3} . ‘[

T3, (L2, 80, (25, (3, 43y, fadd, &

Note: If a set has n elements, how many subsets does it have?
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e Intersection N : ANB={x|xe A?_n_d Xf B} oo - AND) oV \000\Q \'\%3%
e Complement A' or A° or A™: A'={XeU | x ¢ A}.
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e Union U : AUB={x|xe Aorxe B}
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Note: Ag(Au B) and Bg(Au B).
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Definition: We say that A and B are disjoint sets if AnB=9. o%S*
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Example 3: U :{1,2,3,4,5,6,7,8} \(—\ _ 5
RN
H=1{13,5,7
K={{1,2,3}} (mu‘-}‘? o, \’vaﬁ\l\ H\j ard \45
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Venn Diagrams: These help us visualize set relationships and operations.

Example 4: Draw Venn diagrams for AUB, AnB, A°, B°,(AnB)", and (AUB)°.



