5.1.1

5.1: Discrete Random Variables and Probability Distributions

A random variable is a quantitative variable that represents the outcomes of a probability
experiment. Thus, the value of a random variable depends on chance.

A discrete random variable is a random variable that takes on a finite or countably infinite
number of values.

A continuous random variable is a random variable that takes on all values on an interval of the
real number line (i.e., it is not countable).

A discrete probability distribution is a function that assigns a probability to each outcome. (So, it
assigns a probability to each value of the discrete random variable). If there are a finite number
of outcomes, the sum of all their probabilities must equal 1. Each probability must be between 0
and 1, inclusive. The probability distribution can be described by a table, graph, or mathematical
formula.

Notation:

If X is a random variable, then the probability of X taking on the value X is denoted P(X = X).
For example, the probability of X taking on the value 3 is P(X =3). The probability of X taking
on a values of at least 5 is denoted P(X >5).

Example 1: A probability distribution is given by the table below.
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P(X=x) | 0.32 0.18 0.13 0.11 0.10 0.08 0.08
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5.1.2

Example 2: A car repair shop’s records show that 25 clients have 6 cars, 83 clients have 5
cars, 140 clients have 4 cars, 183 clients have 3 cars, and 209 clients have 2 cars. The remaining
313 clients own only 1 car. Determine the probability distribution for the number of cars owned
by the shop’s clients. Construct a probability histogram. If the manager decides to randomly call
a customer and invite him or her to complete a satisfaction survey, what is the probability that
the customer called has 2 or fewer cars?
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5.13

Example 3: Create a probability distribution to represent the number of girls in a three-child
family. Assume that boys and girls are equally likely. Construct the probability histogram. What
is the probability that a three-child family has exactly one girl? What is the probability that a
three-child family has at least one girl?
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