5.2: The Mean and Standard Deviation of a Discrete Random Variable

Mean of a discrete random variable:

The Mean (Expected value) of a Discrete Random Variable:

Suppose that a random variable *X* can take on the *n* values $x_1, x_2, ..., x_n$. Suppose the associated probabilities are $p_1, p_2, ..., p_n$. Then the mean of *X* is

 $\mu = x_1 p_1 + x_2 p_2 + \dots + x_n p_n.$

Suppose an experiment is repeated many times, and the values of *X* are recorded and then averaged. As the number of repetitions increases, the average value of *X* will become closer and closer to μ . For that reason, the mean is called the *expected value* of *X*.

Example 1: A probability distribution is given by the table below. Find the mean (the expected value of X).

	x	3	4	5	6	7	8	9
	P(X = x)		0.20	0.30	0.12	0.08	0.10	0.05
M = E(x) = 3(0.15) + q(0.20) + 5(0.3) + 6(0.12) + 7(0.08)								
+8(0.10)+9(0.05)								
		5.28						

Example 2: Suppose that an organization sells 1000 raffle tickets for \$1 each. One ticket is for a gift basket worth \$200, and three tickets are for \$50 gift certificates to a restaurant. Find the expected <u>net winnings</u> for a person who buys one ticket.

$$X = \text{Het winnings for 1 ficket}$$

$$\frac{\text{Outcome}}{\text{Win nothing}} = \frac{X}{1} = \frac{P(X)}{1000} = 0.996$$

$$\frac{Win gift basked}{100 - 1 = 199} = \frac{1}{1000} = 0.001$$

$$\frac{Win dinner}{(1) \text{ ficke}} = 50 - 81 = 149 + \frac{3}{1000} = 0.003$$

$$\frac{Win dinner}{(1) \text{ ficke}} = -1(0.996) + 199(0.001) + 49(0.003) = -50.65$$

Example 3: Suppose the yearly premium for a car insurance policy is \$2300 for a customer in a certain category. Statisticians for the insurance company have determined that a person in this category has a 0.007 probability of having an accident that costs the insurance company \$100,000 and a 0.015 probability of having an accident that costs the insurance company \$30,000. What is the expected value of the insurance policy to the customer? To the insurance company?

· · ·		l l					
Outcome	X	F(x)					
Bizy accident	(00,000-2300 - 9770)	0.007					
Smallident	30 000 - 2300 - 27700	0.015	⁰				
No	- 2300	(-0.007-0.015=0)	918				
E(x) = M = 97700 (0.007) + 27700 (0.015) - 2300 (0.978) = - \$1150 Expected value to customer is - \$1150.							
= - \$1(150) Expected value to insurance company Expected value to insurance company is \$1(150.							

Standard deviation of a discrete random variable:

The Standard Deviation of a Discrete Random Variable:

Suppose that a random variable *X* can take on the *n* values $x_1, x_2, ..., x_n$. Suppose the associated probabilities are $p_1, p_2, ..., p_n$. Then the mean of *X* is

$$\sigma = \sqrt{(x_1 - \mu)^2 p_1 + (x_2 - \mu)^2 p_2 + \dots + (x_n - \mu)^2 p_n}$$

= $\sqrt{\sum_{i=1}^n (x_i - \mu)^2 p_i}$
Nariance = $\sigma^2 = \sum_{i=1}^n (x_i - \mu)^2 p_i$

x	P(X = x) [sometimes written $P(x)$]
0	0.11
1	0.32
2	0.43
3	0.10
4	0.04
	Z Pi= 1.00

Calculate the mean and standard deviation of the probability distribution. Example 4:

$$Z_{Pi} = \overline{1.00}$$

$$M = E(X) = O(0.11) + I(0.32) + 2(0.43) + 3(0.10) + 4(0.04) = \overline{1.64}$$

Example 5: Use the frequencies to construct a probability distribution for the random variable X, which represents the number of games bowled by customers at a bowling alley. Calculate the mean and standard deviation of X.

×	 Number of Games 	Frequency	P(x)
	1	37	37/127
	2	45	<u>45/127</u> 29/127
	3	29	29/127
	4	12	12/127
	5	4	4/127

N= sum = 127

Find the Mean:

$$\begin{aligned} \mathcal{Y} &= (\frac{3}{23}) + 2(\frac{4}{23}) + 3(\frac{2}{23}) + 4(\frac{2}{23}) + \\ &= \frac{1}{127}((37) + 2(43) + 3(29) + 4(12) + 5(4)) \end{aligned}$$

$$\frac{1}{1000(1)} = \left(\left(\frac{37}{127} \right) + 2 \left(\frac{45}{127} \right) + 3 \left(\frac{29}{127} \right) + 4 \left(\frac{12}{127} \right) + 5 \left(\frac{4}{127} \right) \right)$$

$$= \frac{1}{127} \left(\left((37) + 2 \left(45 \right) + 3 \left(29 \right) + 4 \left(12 \right) + 5 \left(4 \right) \right) \right) = \frac{1}{127} \left(282 \right) = \frac{282}{127}$$

$$\approx 2.205$$

$$\frac{1}{127} \left(\left((27) + 2 \left(45 \right) + 3 \left(29 \right) + 4 \left(12 \right) + 5 \left(4 \right) \right) \right) = \frac{1}{127} \left(282 \right) = \frac{282}{127}$$

$$\approx 2.205$$

$$\frac{1}{127} \left(\left((27) + 2 \left(43 \right) + 3 \left(29 \right) + 4 \left(12 \right) + 5 \left(4 \right) \right) \right) = \frac{1}{127} \left(282 \right) = \frac{282}{127}$$

$$\approx 2.205$$

$$\frac{1}{127} \left(\left((27) + 268 \right) + 3 \left(29 \right) + 4 \left((27) + 5 \left(4 \right) \right) \right) = \frac{1}{127} \left(282 \right) = \frac{282}{127}$$

$$\approx 2.205$$

$$\frac{1}{127} \left(\left((27) + 268 \right) + 3 \left(29 \right) + 4 \left((27) + 5 \left(4 \right) \right) \right) = \frac{1}{127} \left(282 \right) = \frac{292}{127}$$

$$= \sqrt{12} \left(282 \right) = \frac{12}{127}$$

$$= \sqrt{12} \left(282 \right) = \frac{12}{127}$$