Sets.1

Supplement: Basic Set Theory

Definition: A set is a well-defined collection of objects. Each object in a set is called an element of that

set.
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Sets can be finite or infinite.

Examples of finite sets:
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Examples of infinite sets:
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e We usually use capital letters for sets. (oD O \
We usually use lower-case letters for elements of a set.

e ac A means ais an element of the set A. o e l\
a ¢ A means a is not an element of the set A. o % [\

The empty set is the set with no elements. It is denoted &. This is sometimes called the null set.

e S= { X| P( X)} means “S is the set of all X such that P(>§Zis true”. (called rule notation or set

roster notation).

Example: S ={X]| X is an even positive integer} means S ={2,4,6,8,...}

e n(A) means the number of elements in set A.

Definition: We say two sets are equal if they have exactly the same elements.



Sets.2
Subsets:

Definition: If each element of a set A is also an element of set B, we say that A is a subset of B. This is
denoted Ac B or Ac B. If Aisnot a subset of B, we write Az B .

NS D
Definition: We say A is a proper subset of B if Ac B but A= B. (In other words, every element of A is
also an element of B, but B contains at least one element that is not in A.)

Note on notation: Some books use the symbol < to indicate a proper subset. Some books use c to
indicate any subset, proper or not.
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Definition: The set of all elements under consideration is called the um\?ersal set, usually denoted U.
Example: If you’re dealing with sets of real numbers, then U is the set of all real numbers. So

“Wednesday” would not be an element of U, but 5.7 would be in U.

Example 1: Consider these sets.

A={1.2.3.4.5.6] N=C ) e B
B ={12.3.4.5.6.7.8) NE S (W = 3
C={1.3,5.2,4,6}

Note:
e (J isasubset of every set. (i.e. & < A for every set A.)
e Every setis a subset of itself. (i.e. Ac A for every set A.)

Example 2: List all subsets of {1 2, 3
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Note: If a set has n elements, how many subsets does it have?
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Set operations:

1 N = \_ w
e Union U : AUB={x|xe Aorxe B} (OUN' el W NS N o B
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e Intersection N : ANB= {X|XeAandXeB (ou-f \ooo\¢ u\\(.\\{s N et %3
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e Complement A' or A° or A™: A'={XeU | x ¢ A}.
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Note: Ag(Au B) and Bg(Au B).

(AnB)c A and (ANB)cB.

Definition: We say that A and B are disjoint sets if AnB=.

Example 3: U ={1.2,3.4,5,6,7,8}
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Venn Diagrams: These help us visualize set relationships and operations.

Example 4: Draw Venn diagrams for AUB, AnB, A®, B,(AnB)°, and (AUB)°.
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