3.1: Measures of Center

Now, we will begin studying some numerical measures that describe data sets. There are two basic types:

- Measures of central tendency (this section)
- Measures of dispersion (next section)

Summation Notation:

Summation notation is a compact way to write "add up *n* numbers" of "do something to *n* numbers first, and then add them up." The numbers are represented as $x_1, x_2, ..., x_n$ "

Should signal (stands for sum)

Example 1: Consider the numbers 8, 2, 6, 10, 4, 9. Find $\sum_{i=1}^{6} x_i$ and $\sum_{i=1}^{6} x_i^2$. Ex = 8+2+6+10+4+9=[39] 6 2 = x1 + x2 + x3 + ... + x6

=82+22+62+102+42+92=64+4+36+100+16+81

The Mean: Ungrouped Data:

(average)

The *mean* of a set of quantitative data is equal to the sum of all the measurements in the data set divided by the total number of measurements in the set.

If $x_1, x_2, ..., x_n$ is a set of n measurements, then the mean, or average, is given by

[mean] =
$$\frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 where

 $\overline{x} = [\text{mean}]$ if data set is a sample

 $\mu = [\text{mean}]$ if data set is the population

L Greek letter my Mused for population mean)

The median:

Sometimes the mean can be misleading for a data set. Suppose that a math class had 7 students with test scores (out of a possible 100) of 88, 99, 7, 78, 89, 94, and 75.

mean =
$$\frac{36+99+7+78+89+94+75}{7} = 75.71$$

7 75 78 88 89 94 99 Median = 32

The *median* is unaffected by extreme values (outliers). Essentially it is the "middle" of the data set.

To find the median, you'll need to sort the data in numerical order.

The Median (Ungrouped Data):

- If the number of measurements is odd, the median is the middle measurement when the measurements are arranged in descending or ascending order.
- If the number of measurements is even, the median is the mean of the two middle measurements when the measurements are arranged in descending or ascending order.

Example 2: Find the median of the test scores 88, 99, 7, 78, 89, 94, and 75.

Example 3: Find the median of the test scores 88, 85, 99, 7, 78, 89, 94, and 75.

Example 4: Provide some everyday examples in which the median is more useful than the mean.

The mode:

The Mode:

The *mode* is the most frequently occurring value in a data set, provided it occurs at least twice. There may be a unique mode, several modes, or no mode.

A data set with two modes is called bimodal.

Example 5: Find the median and mode for the following data sets.

a. {4, 5, 5, 5, 6, 7, 8, 12}

Median: 5

mode: 5

b. {1, 2, 3, 3, 3, 5, 7, 7, 7, 23}

Median: $\frac{3+5}{2} = \frac{8}{2} = \frac{4}{1}$ (find mean of the middle two points) Modes: $\frac{3}{3}$, $\frac{7}{3}$ (binodal) c. $\{1,3,5,6,7,9,11,15\}$

Example 6:

Mean, median, and mode for distributions of different shapes:

Skewed right: more data on the left (lower) end.

mode Median mean

Skewed left: more data on the right (upper) end.

Uniform: Mean Median

Symmetric:

Median Mean Mean Mode median: half the area is on each side

if data set is symmetric, the mean and median are equal.

The mode will be the reak