4.3: Some Rules of Probability

Example 1: Need-based financial aid for college students can take the form of grants (do not need to be repaid) or loans (must be repaid). Consider a group of 70 students in which 30 students received grants, 35 received loans, and 13 received both. How many of these students received need-based financial aid?

Notation: n(A) means the number of elements in set A.

Probability of unions and intersections:

Probability of a Union of Two Events:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

If the two events are mutually exclusive (disjoint):

 $P(A \cup B) = P(A) + P(B)$

Complements:

Probability of a complement: $P(E^{C}) = 1 - P(E)$ $P(E) = 1 - P(E^{C})$

Example 1: Suppose that the probability of someone voting for a certain candidate is 0.46. What is the probability of not voting for the candidate?

$$P(E) = 0.46$$

 $P(E) = 1 - 0.46 = 0.54$

Consider the data below, from the Congressional Research Service. Example 2: https://fas.org/sgp/crs/misc/RS20811.pdf

Income Class	# of Households (in thousands)	% of Households
All Households	122,459	100.0
ess than \$5,000	4,204	3.4
5,000 to \$9,999	4,729	3.9
10,000 to \$14,999	6,982	5.7
15,000 to \$19,999	7,157	5.8
20,000 to \$24,999	7,131	5.5
25,000 to \$29,999	6,740	5.4
30,000 to \$34,999	6,354	5.2
35,000 to \$39,999	4 204 6,740 6,354 5,832	4.8
40,000 to \$44,999	5,547	4.5
45,000 to \$49,999	5,254	4.4
50,000 to \$59,999	9,358	7.6
60,000 to \$69,999	8,305	6.8
70,000 to \$79,999	7,170	5.9
80,000 to \$89,999	5,969	4.9
90,000 to \$99,999	4,901	4.0
\$100,000 to \$124,999	9,490	7.7
125,000 to \$149,999	5,759	4.7
150,000 to \$199,999	6,116	5.0
200,000 to \$249,999	2,549	2.1
250,000 and above	2,911	2.4
1edian Income	\$51.017	
1ean Income	\$71,274	

Table 1. Distribution of Household Money Income by Selected Income Class, 2012

Source: U.S. Census Bureau, 2012 Annual Social and Economic Supplement to the Current Population Survey.

a) What is the probability that a randomly selected household has an income of \$100,000 or more? P(I > 100k) = 0.077 + 0.047 + 0.05 + 0.021 + 0.024= 0.219

b) What is the probability that a randomly selected household has an income below \$40,000? P(T < 40K) = 0.034 + 0.039 + 0.057 + 0.058 + 0.055 + 0.059 + 0.052 + 0.048 = 0.397

What is the probability that a randomly selected household has an income below \$40,000?

d) What is the probability that a randomly selected household has an income below \$250,000?

T: Income $\angle \#250K$, the complement! T(DE) = 0.024. So P(D) = 1 - 0.024 = $\underbrace{0.976}$ e) What is the probability that a randomly selected household has an income of \$20,000 or more? #20K, P(EE) = 0.034 + 0.039 + 0.057 + 0.058 = 0.188E: 17\$20K. 50 P(E)=1-P(E)=1-0.188=0.812 f) Approximate the median household income.

~~~

Parts of Example 3: Consider a standard deck of 52 cards. 4 - -+ + 5. + 6. . --.... · ÷ \* \*: \* \*: \* \*;

a) What is the probability that a randomly selected card is a spade or a heart?

P

$$(HU Spade) = P(H) + P(Spade) - P(H) Spade) = \frac{13}{52} + \frac{13}{52} - \frac{0}{52} = \frac{240}{52} = \frac{1}{2}$$

b) What is the probability that a randomly selected card is a spade or an ace?