5.1: Discrete Random Variables and Probability Distributions

A *random variable* is a <u>quantitative</u> variable that represents the outcomes of a probability experiment. Thus, the value of a random variable depends on chance.

A *discrete random variable* is a random variable that takes on a finite or countably infinite number of values.

A *continuous random variable* is a random variable that takes on all values on an interval of the real number line (i.e., it is not countable).

A *discrete probability distribution* is a function that assigns a probability to each outcome. (So, it assigns a probability to each value of the discrete random variable). If there are a finite number of outcomes, the sum of all their probabilities must equal 1. Each probability must be between 0 and 1, inclusive. The probability distribution can be described by a table, graph, or mathematical formula.

Notation:

If X is a random variable, then the probability of X taking on the value x is denoted P(X = x). For example, the probability of X taking on the value 3 is P(X = 3). The probability of X taking on a values of at least 5 is denoted $P(X \ge 5)$.

Example 1: A probability distribution is given by the table below.

X	12	13	14	15	16	17	18
P(X = x)	0.32	0.18	0.13	0.11	0.10	0.08	0.08

b) What is
$$P(X \ge 16)$$
?

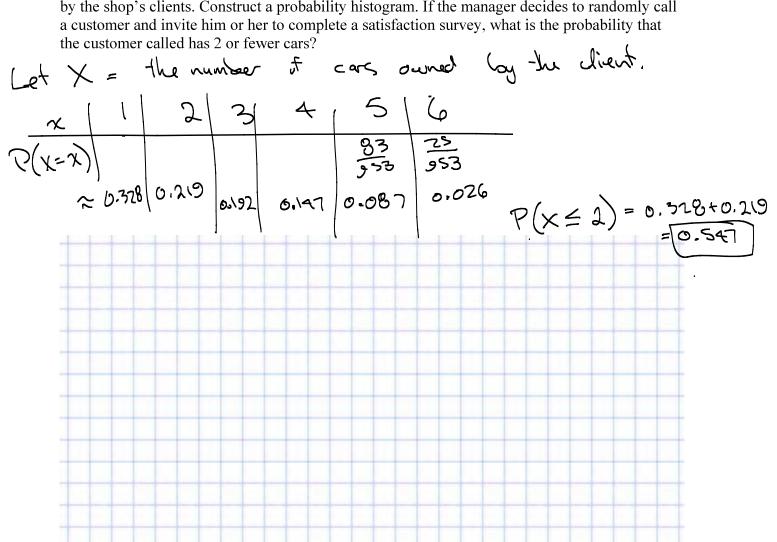
 $P(X \ge 16) = P(X = 16) + P(X = 17) + P(X = 18)$
 $P(X \ge 16) = P(X = 16) + P(X = 17) + P(X = 18)$

c) What is $P(X > 13)$?

 $P(X > 13) = P(X = 14) + P(X = 18) + \dots + P(X = 18)$
 $P(X > 13) = P(X = 14) + P(X = 13) = 0.32 + 0.18 = 0.58$
 $P(X > 13) = P(X = 12) + P(X = 13) = 0.32 + 0.18 = 0.58$
 $P(X > 13) = 1 - 0.5$
 $P(X > 13) = 1 - 0.5$

N= 25+83+140+183+209+813=953

Example 2: A car repair shop's records show that 25 clients have 6 cars, 83 clients have 5 cars, 140 clients have 4 cars, 183 clients have 3 cars, and 209 clients have 2 cars. The remaining 313 clients own only 1 car. Determine the probability distribution for the number of cars owned by the shop's clients. Construct a probability histogram. If the manager decides to randomly call a customer and invite him or her to complete a satisfaction survey, what is the probability that the customer called has 2 or fewer cars?



Example 3: Create a probability distribution to represent the number of girls in a three-child family. Assume that boys and girls are equally likely. Construct the probability histogram. What is the probability that a three-child family has exactly one girl? What is the probability that a three-child family has at least one girl?

Let
$$X = 3$$
 the number of girls

 $S = \{999, 699, 969, 960, 960, 690, 660\}$

all these one equally lively.

 $S = \{999, 699, 969, 960, 690, 660\}$
 $S = \{999, 699, 969, 960, 690, 690, 660\}$
 $S = \{999, 699, 969, 960, 690, 690, 660\}$
 $S = \{999, 699, 969, 969, 960, 690, 690, 690\}$
 $S = \{999, 699, 969, 960, 690, 690, 690\}$
 $S = \{999, 699, 969, 960, 690, 690, 690, 690\}$
 $S = \{999, 699, 969, 960, 690, 690, 690\}$
 $S = \{999, 699, 969, 960, 690, 690\}$
 $S = \{999, 969, 969, 960, 690\}$
 $S = \{999, 969, 969, 960\}$
 $S = \{999, 969, 969, 969, 960\}$
 $S = \{999, 969, 969, 960\}$
 $S = \{999, 969, 969, 969, 969\}$
 $S = \{999, 969, 969, 969, 969\}$
 $S = \{999, 969, 969, 969, 969\}$
 $S = \{999, 969$

