5.2: The Mean and Standard Deviation of a Discrete Random Variable

Mean of a discrete random variable:

The Mean (Expected value) of a Discrete Random Variable:

Suppose that a random variable *X* can take on the *n* values $x_1, x_2, ..., x_n$. Suppose the associated probabilities are $p_1, p_2, ..., p_n$. Then the mean of *X* is

 $\mu = x_1 p_1 + x_2 p_2 + \dots + x_n p_n.$

Suppose an experiment is repeated many times, and the values of X are recorded and then averaged. As the number of repetitions increases, the average value of X will become closer and closer to μ . For that reason, the mean is called the *expected value* of X.

Example 1: A probability distribution is given by the table below. Find the mean (the expected value of X).

Example 2: Suppose that an organization sells 1000 raffle tickets for \$1 each. One ticket is for a gift basket worth \$200, and three tickets are for \$50 gift certificates to a restaurant. Find the expected net winnings for a person who buys one ticket.

$$X = net winnings for (Nicket)
\frac{1}{200 \text{ basket}} x P(X=x)
Win $200 \text{ basket} 200-1 - 1
Win $50 dinner $0-1=49 - 3
1000 = 0.003
1050 dinner $0-1=49 - 3
1000 = 0.003
1050 - 0.003
1050 - 0.003 - 0.003
1050 - 0.003 - 0.003
Expedied net winnings: $M = E(x) = 199(0.001) + 49(0.003) - 1(0.996)$
 $= -$0.053$$$

Example 3: Suppose the yearly premium for a car insurance policy is \$2300 for a customer in a certain category. Statisticians for the insurance company have determined that a person in this category has a 0.007 probability of having an accident that costs the insurance company \$100,000 and a 0.015 probability of having an accident that costs the insurance company \$30,000. What is the expected value of the insurance policy to the customer? To the insurance company?

$$\frac{\text{Outcome}}{\text{Big accident}} \propto \frac{P(X = x)}{P(X = x)}$$

$$\frac{\text{Big accident}}{\text{Eille accident}} \approx 91700 \quad 0.007$$

$$\frac{1111}{1111} = \text{accident}} \approx 0.007 \quad 0.015$$

$$\frac{1111}{100} \quad 0.015 \quad 0.015 = 0.07 = 0.978$$

$$= E(x) = 597700 \quad (0.007) + 527700 \quad (0.015) - 52300 \quad (0.978)$$

$$M = E(X) = \$97700(0.007) + \$27700(0.015) = 200(0.015)$$

$$= [-\$1150 (expected value to customer)]$$

$$Expected value to insurance company: \$1150$$

Standard deviation of a discrete random variable.

The Standard Deviation of a Discrete Random Variable:

Suppose that a random variable X can take on the *n* values $x_1, x_2, ..., x_n$. Suppose the associated probabilities are $p_1, p_2, ..., p_n$. Then the mean of X is $\sigma = \sqrt{(x_1 - \mu)^2 p_1 + (x_2 - \mu)^2 p_2 + ... + (x_n - \mu)^2 p_n}$ $= \sqrt{\sum_{i=1}^n (x_i - \mu)^2 p_i}$

variance:
$$\sigma^2 = \sum_{i=1}^{2} (x_i - M)^2 p_i$$

Std dev = Juariance
variance = (st. dex)²

Recall:

5.2.2

X	P(X = x) [sometimes written $P(x)$]
0	0.11
1	0.32
2	0.43
3	0.10
4	0.04

and variance

Example 4: Calculate the mean and standard deviation of the probability distribution.

Mean	$= \mu = 0$	(0,1) + ((0.32) + 2(0.43) + 3(1)	(0, 10) + 4(0, 04) = [1.67 -]1
E(Y ×	[R(X:x)]	$(\chi_i - \mu)^2$	$ (\gamma_i - M)_{r_i} $
0	0+11	(0-1.64) = (-1.64) = 2.6896	2.6896(0.11) = 0.295856
1	0.32	$(1-1.64)^2 = (-0.64)^2 = 0.40.96$ $(2-1.64)^2 = (0.36)^2 = 0.12.96$	0.2096 (0.32) = 0.131072
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.43	$(3-1.64)^2 = (1.36)^2 = 1.8496$	0.18496
4	0.04	$(4 - 1.64)^2 = (2.36)^2 = 5.5696$	Sum= 0.8904

**Example 5:** Use the frequencies to construct a probability distribution for the random variable X, which represents the number of games bowled by customers at a bowling alley. Calculate the mean and standard deviation of X.

			Variance:
	Number of Games	Frequency	
	1	37	Variance: 0-2= 0-890- 5td. deviation: 0= J0,3907
	2	45	1 all doubtion:
	3	29	530. 000000
	4	12	5= 10,3907
	5	4	
See vert			<u> </u>
See mi	)		
Soft	)		

11

Ζ.

1 1

V

**Example 5:** Use the frequencies to construct a probability distribution for the random X, which represents the number of games bowled by customers at a bowling alley. C mean and standard deviation of X.



h = 127

x   P(x = x)	- mean: (expected value)
37/27	37 (45)
2 45/127	$\mathcal{U} = E(\mathcal{X}) = \left( \begin{pmatrix} 37\\ 127 \end{pmatrix} + 2 \begin{pmatrix} 45\\ 127 \end{pmatrix} + \right)$
2 45/27 3 29/27	4(12) + 5(4)
	$3\left(\frac{29}{127}\right) + 4\left(\frac{12}{127}\right) + 5\left(\frac{4}{127}\right)$
4 12/12 5 (4/127	$= \frac{1}{127} ((37) + 2(45) + 3(29) + 4(12) + 5(4))$
	$= \frac{1}{127} (1031110000 + 5(4))$
Sum= 1	

$$\frac{282}{(1-1)^{2}} \times (.48955) = \frac{282}{(2-A)^{2}} \times (.48955) = \frac{37}{(27)} \times (.21205) = \frac{2}{(2-A)^{2}} \times (.48955) = \frac{37}{(27)} \times (.291) = 0.433963 = \frac{3}{(27)} \times (.291) = 0.433963 = \frac{3}{(27)} \times (.291) = 0.433963 = \frac{3}{(27)} \times (.291) = 0.138757 = 0.138757 = 0.138757 = 0.138757 = 0.138757 = 0.138757 = 0.299218 = 0.299218 = 0.299218 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.243331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.24333331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 = 0.2433331 =$$

