5.3: The Binomial Probability Distribution ### Bernoulli trials: A *Bernoulli trial* is an experiment with exactly two possible outcomes. We refer to one of the outcomes as a *success* (S) and to the other as a *failure* (F). We'll call the probability of success p and the probability of failure q. In other words, P(S) = p and P(F) = 1 - p = q. (Note that S and F are complements of one another.) **Example 1:** Roll a single die. Consider rolling a 5 to be a success. Success: I roll a 5 Failure: I roll a (,2,3,4,6) $F = \{5,3\}$ $F = \{5,3\}$ $F = \{5,3\}$ Roll a pair of dice. Consider success to be rolling a sum of 7, 11, or 12. Example 2: Roll a pair of dice. Consider success to be rolling a sum of 7, 11, or 12. On one treat: S = set if 36 ordered pairs (1,1), (1,2), (1,3), (1,4),probability of a particular number of successes. Q = P(Farlure)Suppose we repeat a Bernoulli trial 6 times and each time the trial is independent of the others. From the multiplication principle, what is the probability of getting SFSSSF? P(SFSSSF) = PQPPP9 = P'92 What is the probability of getting SSSFFS? P(SSSFF6) = PPP997 = P92 What is the probability of having 4 successes in the 6 trials? nany ways are there to droose & of the 6 trials to be successful? C6,4 P(4 sucusses in 6 trials) = C6,4 pt g2 Now let's write all this down in a more precise way: A sequence of experiments is called a sequence of Bernoulli trials, or a binomial experiment, if - 1. The same experiment is repeated a fixed number of times. (Each repetition is called a trial.) - 2. Only two outcomes are possible on each trial. - 3. The probability of success p for each trial is a constant. - 4. All trials are independent. ## Probabilities in Bernoulli Trials: If the probability of success is p and the probability of failure is q, then the probability of exactly $$x$$ successes in n Bernoulli trials is $$P(X = x) = C_{n,x} p^{x} q^{n-x}, \text{ or equivalently, } P(X = x) = \binom{n}{x} p^{x} q^{n-x}.$$ #### The binomial formula: For any natural number $$n$$, $$(a+b)^n = C_{n,0}a^nb^0 + C_{n,1}a^{n-1}b^1 + C_{n,2}a^{n-2}b^2 + \dots + C_{n,n}a^0b^n$$ $$= \sum_{i=0}^n C_{n,i}a^{n-i}b^i$$ Notice the similarity between this formula and the formula for probabilities in a sequence of Bernoulli trials. This is why such a sequence is called a *binomial experiment*. **Example 4:** If a single fair die is rolled 10 times, what is the probability of trial, success = a 4 is valled 00 - a. Exactly three 4's? - b. At most three 4's? - c. At least one 4? (a) exactly 3 successes in 10 trials P(x=3)= C_{10,3} (1/6) (5/6) = 120 (2)3(2) \$= {1,2,3,4,5,6}. So P = P(Success) = 6 q = P(Failure) = 5 at most 3 successes in 10 trials See the page after next : Often we need to select a random sample from a larger population. To do this, we would select each item/person in a separate trial, without replacement. (We do not want to select the same person twice). Because the selected individuals are not replaced, the population size decreases by 1 with each trial. For that reason, this process is not a binomial experiment. (The probability of success is not the same for all the trials.) Instead, the probabilities follow a hypergeometric distribution. However, as long as the sample does not exceed 5% of the population, the distribution will be extremely close to the binomial distribution, and it is acceptable to use the binomial distribution as an approximation. Example 5: In the United States, about 9% of people have blood type B+. If 20 people donate blood, what is the probability that exactly three of them are B+? At least three? 1 trial = Ex 5 contidi: (5) at least 18 have Bt P(x=18) = P(x=18) + P(x=19) + P(x=20)= C20,18 (0.09) (0.91) + C20,19 (0.09) (0.91) + C20,20 (0.09) (0.91) (1) (0.09) + (10.0) ((0.0) 0 + 70.0) ((0.0) 00) = = 2.362×10^{17} + 2.459×10^{19} + 1.216×10^{-21} $\approx 2.386 \times 10^{17}$ (very, very unlikely to have 18t with blood type Bt when only 972 of repulation has it) C) At least 3 successes E: P(x>3)= P(x=3)+P(x=4)+P(x=20) use compliment! Compliment: Ec: P(XC3) = P(X=0)+P(X=1)+P(X=2) $= C_{20,0}(0.09)(0.91) + C_{20,1}(0.09)(0.21)^{9} + C_{20,12}(0.09)^{2}(0.91)^{8}$ = 1.1.(0.9)7+20(0.0)(0.0)10+190(0.0)7(0.9) = 0.15164+0-29996+0.28183 = 0.73343 subtract from 1 to get P(E). P(X>3)=1-0.73343=[0.2666] Example 4 continued: (Dice, success = volling a 4) (B) At most three successor $$(n=10, p=\frac{1}{4}, q=\frac{5}{4})$$ X = the number of successors P(X=3) = P(X=0) + P(X=1) + P(X=2) + P(X=3) $= C_{10,0} \left(\frac{1}{6} \right) \left(\frac{5}{6} \right)^{6} + C_{10,1} \left(\frac{1}{6} \right)^{1} \left(\frac{5}{6} \right)^{9} + C_{10,2} \left(\frac{1}{6} \right)^{2} \left(\frac{5}{6} \right)^{8} + C_{10,3} \left(\frac{1}{6} \right)^{3} \left(\frac{5}{6} \right)^{7}$ $= 1 \cdot 1 \cdot \left(\frac{5}{6}\right)^{6} + 10 \left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{6} + 45 \left(\frac{1}{6}\right)^{7} \left(\frac{5}{6}\right)^{8} + 120 \left(\frac{1}{6}\right)^{3} \left(\frac{5}{6}\right)^{7}$ = 0.16151 +0.32301+0.29071 +0.15505 = 0.93028 × 0.9303 @ At least one success $P(x_{>}) = P(x_{=}) + P(x_{=}) + P(x_{=}) + \dots + P(x_{=})$ Yuk! Use complement instead: Rob of complement: $P(X=0) = C_{\omega,0} \left(\frac{1}{6}\right)^0 \left(\frac{5}{6}\right)^0 = 1.1. \left(\frac{5}{6}\right)^0 = 0.16151$ P(X>1) = 1-0.16151 ~ [0.8385] E=93,63 ### The binomial distribution: Sum We can now generalize Bernoulli trials and determine probability distributions. In a binomial experiment with n trials and probability of success p, we can create a binomial distribution table and a histogram, with the variable x representing the number of successes. $$E(X) = M = O(\frac{2}{27}) + 1(\frac{2}{27}) + 2(\frac{2}{27}) + 3(\frac{2}{27}) = \frac{2}{27} = 1$$ Example 6: Suppose a fair die is rolled three times and a success is considered to be rolling a number divisible by 3. N = 3 | X | P(X=X) X= # successels | |---|--| | 0 | (3)(言)。(言)。二(同)(言)。二二 | | | (3)(音)=3(高)(音)= 音= 12 | | 1 | | |) | $(3)^{2}(\frac{1}{3})^{2}(\frac{2}{3}) = \frac{3}{3}(\frac{1}{9})(\frac{2}{3}) = \frac{2}{9} = \frac{6}{27}$ | | | | | 3 | (3,3 (3)3(3) = 1 (3)3 (1) = 1 | | $= \frac{8}{Mc} + \frac{2}{27} + \frac{1}{27} = \frac{27}{27} = \sqrt{\frac{1}{27}}$ Mean and standard deviation of the binomial distributi | | | Mean and standard deviation of the binomial distributi | | $$P = P(12) = \frac{2}{6} = \frac{1}{3}$$ $$0.4 - \frac{2}{3}$$ $$0.3 - \frac{2}{3}$$ $$0.1 - \frac{2}{3}$$ We can determine the <u>mean</u> number of successes (or the *expected value* of x) for any binomial distribution. # Mean (Expected Value) of the Binomial Distribution: In a binomial experiment with n trials and probability of success p, the expected value, or mean, is $$E(x) = \mu = np.$$ Standard Deviation of the Binomial Distribution: $$\sigma = \sqrt{np(1-p)} = \sqrt{npq}$$ $$E(X) = M = mp = 10(\frac{1}{6}) = \frac{10}{6} = \frac{12}{3} \frac{1}{4} \cdot (67)$$ $q = 1 - \frac{1}{6} = \frac{5}{6}$ Find sto. dex of the $n = 10$ number of successor: $n = 10 \cdot (\frac{1}{6}) \cdot (\frac{5}{6}) \approx 1.179$ **Example 10:** Suppose the test is multiple choice test with 5 choices on each of 10 questions. If you guess randomly at the answers, what is the probability of passing with at least a 70%? What grade would you expect to receive on the test?