53.1
5.3: The Binomial Probability Distribution

Bernoulli trials:

A Bernoulli trial is an experiment with exactly two possible outcomes. We refer to one of the
outcomes as a success (S) and to the other as a failure (F). We’ll call the probability of success p
and the probability of failure q. In other words,

P(S)=p and P(F)=1-p=q. (Note that S and F are complements of one another.)

Example 1: Roll a single die. Consider rolling a 5 to be a success.
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Example 2: Roll a pair of dice. Consider success t&*be rolling a sum of 7, 11, or 12.
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Consider what happens when a Bernoul}l trial is repeate seV—?&Ttlmes ‘I’{Iow w%an discuss the
probability of a particular number of successes.
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Suppose we repeat a Bernoulli tr1a1 6 times and each time t tr1al is independent of the others.
From the multiplication principle, what is the probability of getting SFSSSF?
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What is the probability of getting SSSFFS?
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What is the probability of having 4 successes in the 6 trials?
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Example 3: Ifa single die is rolled 6 times, what is the probability of getting four 5°s?
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Binomial experiments:
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Now let’s write all this down in a more precise way:

A sequence of experiments is called a sequence of Bernoulli trials, or a binomial
experiment, if

1. The same experiment is repeated a fixed number of times. (Each
repetition is called a trial.)

2. Only two outcomes are possible on each trial.

3. The probability of success p for each trial is a constant.

4. All trials are independent.

Probabilities in Bernoulli Trials:

If the probability of success is p and the probability of failure is g, then the probability
of exactly X successes in n Bernoulli trials is
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n
P(X =x)=C,,p*q"™, orequivalently, P(X =) = (X) p g™,

The binomial formula:

For any natural number n,

(a+h)"=C, ,a"’+C ,a"'h'+C ,a"’b*+...+C,,a’b"
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Notice the similarity between this formula and the formula for probabilities in a sequence of
Bernoulli trials. This is why such a sequence is called a binomial experiment.
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Example 4: If a single fair die is rolled 10 times, what is the probability of

a. Exactly three 4°s? On \ o keed, sueenss = s & TS o llid
b. At most three 4’s?
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Often we need to select a random sample from a larger population. To do this, we would select
each item/person in a separate trial, without replacement. (We do not want to select the same
person twice). Because the selected individuals are not replaced, the population size decreases by
1 with each trial. For that reason, this process is not a binomial experiment. (The probability of
success is not the same for all the trials.) Instead, the probabilities follow a hypergeometric
distribution.

However, as long as the sample does not exceed 5% of the population, the distribution will be
extremely close to the binomial distribution, and it is acceptable to use the binomial distribution
as an approximation.

Example S5: In the United States, about 9% of people have blood type B+. If 20 people donate 1
blood, what is the probability that exactly three of them are B+? At least three? N¥ o \D ¢
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The binomial distribution:
We can now generalize Bernoulli trials and determine probability distributions.

In a binomial experiment with n trials and probability of success p, we can create a binomial
distribution table and a histogram, with the variable X representing the numbe uccesses
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Example 6: Suppose a fair die is rolled three times and a success is con51dered to be rolhng a
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Sum M’é'an aﬁd standard devm%'—‘on of the binomial distribution: \ ! T

We can determine the mean number of successes (or the expected value of X) for any binomial
distribution.

Mean (Expected Value) of the Binomial Distribution:

In a binomial experiment with n trials and probability of success p, the
expected value, or mean, is

E(X)=u=np.

Standard Deviation of the Binomial Distribution:

o =/np(1- p) =/npq .

Example 7: Roll a single fair die 10 times. Consider rolling a 4 to be a success. F1nd the
expected number of successes. On \ < &9~ ? (9 “L{%B
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Example 8: Suppose that a certain cancer treatment has been found to be effective in 63% of
patients. If 300 patients undergo the treatment, in how many cases would you expect the
treatment to be effective? What is the standard deviation of the variable representing the number
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Example 9: An exam has 10 true-false questlons Suppose that you haven’t studied all —=

semester, so your only choice is to guess randomly on each question. If you need a 70% to pass,
what is your probability of passing?

Example 10: Suppose the test is multiple choice test with 5 choices on each of 10 questions. If
you guess randomly at the answers, what is the probability of passing with at least a 70%? What
grade would you expect to receive on the test?



