9.5: Hypothesis Tests for One Population Mean When σ is Unknown

In practice, when we are using a sample to make inferences about the population mean, it is rare for us to know the population standard deviation.

Instead, we must use the sample standard deviation, *s*, as a point estimate of the population standard deviation, σ .

When using s as an estimate for σ , we cannot use a z-test, because $\frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$ is not normally

distributed.

The *t*-test for one population mean:

When using s as an estimate for σ , we use the Student *t*-distribution.

In order to use this procedure, we need to know (or be able to reasonably assume) that the variable of interest follows a normal distribution, or we must have a large sample size ($n \ge 30$).

In addition, the sample should be randomly obtained, observations within the sample must be independent of one another. This means that if we have a sample size that is more than 5% of the population, we should multiply the standard error by a finite population correction factor,

 $\sqrt{\frac{N-n}{n-1}}$. (In this class, I do not anticipate that we will encounter this situation.)

Hypothesis Testing for a Population Mean:

<u>Step 1</u>: Determine the significance level α .

Two-Tailed Test (most common)	Left-Tailed Test (rare)	Right-Tailed Test (rare)
$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$	$H_0: \mu = \mu_0$
$H_1: \mu eq \mu_0$	$H_1: \mu < \mu_0$	$H_1: \mu > \mu_0$
the state	t d	d
Rejection Region	Rejection Region	Rejection Region

Note: One tailed tests assume that the scenario not listed ($\mu > \mu_0$ for a left-tailed test or $\mu < \mu_0$ for a right-tailed test) is not possible or is of zero interest.

<u>Step 3</u>: Use your α level and hypotheses, sketch the rejection region.

Step 4: Compute the test statistic
$$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$$

<u>Step 5</u>: Use a table (Table <u>IV</u>, on page \rightarrow 3) to determine the <u>critical value for t</u> associated with your rejection region.

<u>Step 6</u>: Determine whether the value of t calculated from your sample (in Step 3) is in the rejection region.

- If *t* is in the rejection region, reject the null hypothesis.
- If *t* is not in the rejection region, do not reject the null hypothesis.

<u>Step 7</u>: State your conclusion.

Example 3: Suppose a manufacturer claims on the label that a package contains 8 ounces of potato chips. A customer (or a FDA analyst) buys 50 bags of chips, weighs them on a high-accuracy scale, and obtains a sample mean of 7.89 ounces with a sample standard deviation of 0.2 ounces. Does this sample provide evidence that the manufacturer's labeling may be inaccurate? Use the $\alpha = 0.10$ level of significance.

Example 4: Suppose a manufacturer claims on the label that a package contains 8 ounces of potato chips. Again, a customer (or a FDA analyst) wonders whether the package size is accurate. This time, the analysist only buys 10 bags of chips, and obtains a sample mean of 7.89 ounces with a sample standard deviation of 0.2 ounces. Does this sample provide evidence that the manufacturer's labeling may be inaccurate? Use the $\alpha = 0.10$ level of significance.