4.3: Some Rules of Probability

Example 1: Need-based financial aid for college students can take the form of grants (do not need to be repaid) or loans (must be repaid). Consider a group of 70 students in which 30 students received grants, 35 received loans, and 13 received both. How many of these students received need-based financial aid?

G: received gravits
L: received gravits
30-13
=17
Notation:
$$n(A)$$
 means the number of elements in set A .
Addition Principle for Counting
For any two sets A and B ,
 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.
If A and B are mutually exclusive $(A \cap B = \emptyset)$, then $n(A \cup B) = n(A) + n(B)$.
Mutually exclusive: no outcomes in common (also called disjoint events).
E xomple (Using) Addition Principle : $n(G_1 \cup B) = n(G_1) + n(B)$.
Mutually exclusive: no outcomes in common (also called disjoint events).
E xomple (Using) Addition Principle : $n(G_1 \cup B) = n(G_1) + n(G_2) - n(G_2 \cap G_3)$
Probability of unions and intersections:
 $E = 30 + 35 - 13 = G_2 - 13$
 $E(G_1 + F(G_1) - F(G_1))$
 $= \frac{30}{70} + \frac{35}{70} - \frac{13}{70}$
Probability of a Union of Two Events:
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
If the two events are mutually exclusive (disjoint):
 $P(A \cup B) = P(A) + P(B)$
 $= \frac{52}{70} = \frac{26}{35} \times 0.743$

Assume that an equally likely sample space is described by the Venn diagram Example 2: below.

Complements:

Probability of a complement:

$$P(E^{C}) = 1 - P(E)$$

 $P(E) = 1 - P(E^{C})$

Suppose that the probability of someone voting for a certain candidate is 0.46. obability of not voting for the candidate? A: Person roles for this candidate! Example 1: What is the probability of not voting for the candidate?

$$P(A) = 0.46$$

 $P(A) = 1 - 0.46 = 0.54$

Example 2: Consider the data below, from the Congressional Research Service. https://fas.org/sgp/crs/misc/RS20811.pdf

Income Class	# of Households (in thousands)	% of Households
All Households	122,459	100.0
ess than \$5,000	4,204	3.4
\$5,000 to \$9,999	4,729	3.9
\$10,000 to \$14,999	6,982	5.7
\$15,000 to \$19,999	7,157	5.8
20,000 to \$24,999	7,131	5.5
\$25,000 to \$29,999	6,740	5.4
30,000 to \$34,999	6,354	5.2
35,000 to \$39,999	5,832	4.8
\$40,000 to \$44,999	5,547	4.5
\$45,000 to \$49,999	5,254	4.4
50,000 to \$59,999	9,358	7.6
\$60,000 to \$69,999	8,305	6.8
\$70,000 to \$79,999	7,170	5.9
\$80,000 to \$89,999	5,969	4.9
\$90,000 to \$99,999	4,901	4.0
\$100,000 to \$124,999	9,490	7.7
\$125,000 to \$149,999	5,759	4.7
\$150,000 to \$199,999	6,116	5.0
200,000 to \$249,999	2,549	2.1
250,000 and above	2,911	2.4
Median Income	\$51.	017 %
Mean Income	\$71,	274

-----2012

Source: U.S. Census Bureau, 2012 Annual Social and Economic Supplement to the Current Population Survey.

a) What is the probability that a randomly selected household has an income of \$100,000 or 0.077 ~0.047 +0.050 +0.021 +0.024 more?

b) What is the probability that a randomly selected household has an income below \$40,000?

c) What is the probability that a randomly selected household has an income below \$40,000?

d) What is the probability that a randomly selected household has an income below \$250,000?

D. Income C = 250k Use complumit $P(D^2) = 0.024$, so P(D) = 1 - 0.024 = 0.976e) What is the probability that a randomly selected household has an income of \$20,000 or more? e) What is the probability that a randomly selected household E: = 1204 E: = 1204 $F(E^2) = 0.034 + 0.039 + 0.057 + 0.058 = 0.188$ = 1-0.188 = 0.0128

SUP