5.2: The Mean and Standard Deviation of a Discrete Random Variable

Mean of a discrete random variable:

The Mean (Expected value) of a Discrete Random Variable:

Suppose that a random variable *X* can take on the *n* values $x_1, x_2, ..., x_n$. Suppose the associated probabilities are $p_1, p_2, ..., p_n$. Then the mean of *X* is

 $\mu = x_1 p_1 + x_2 p_2 + \dots + x_n p_n.$

Suppose an experiment is repeated many times, and the values of *X* are recorded and then averaged. As the number of repetitions increases, the average value of *X* will become closer and closer to μ . For that reason, the mean is called the *expected value* of *X*.

Example 1: A probability distribution is given by the table below. Find the mean (the expected value of X).

x	3	4	5	6	7	8	9
P(X = x)	0.15	0.20	0.30	0.12	0.08	0.10	0.05
	•	•		•	•		

Mean:	M = E(X)	= 3(0.15)+4(0.1	20) + 5(0.30) + 6(0)). 12)
		+ 7 (O.08) +	20)+5(0.30) + 6(0 &(0.10) + 9(0.05)	= (5,28 = M)

Example 2: Suppose that an organization sells 1000 raffle tickets for \$1 each. One ticket is for ω . If ω is a gift basket worth \$200, and three tickets are for \$50 gift certificates to a restaurant. Find the expected net winnings for a person who buys one ticket.

Example 3: Suppose the yearly premium for a car insurance policy is \$2300 for a customer in a certain category. Statisticians for the insurance company have determined that a person in this category has a 0.007 probability of having an accident that costs the insurance company \$100,000 and a 0.015 probability of having an accident that costs the insurance company \$30,000. What is the expected value of the insurance policy to the customer? To the insurance company?

company :		X = value at	policy to the customer
Outcome	value of X	P(x=x)	H= E(x) = 97700 (0.007)
Rig accident	100 000 - 2300 =\$ 97 700	0.007	× 27 700 (0.015) -2300 (0.978
Small accident	30 000 - 2300 = \$ 27 700	0.015	= - \$1150 expected value to customer
No accident	- \$2300	1-0.015-0.007 =0.978	Expected value to the insurance company is the 1150

Standard deviation of a discrete random variable:

The Standard Deviation of a Discrete Random Variable: Suppose that a random variable X can take on the *n* values $x_1, x_2, ..., x_n$. Suppose the associated probabilities are $p_1, p_2, ..., p_n$. Then the mean of X is storeduced deviation $\sigma = \sqrt{(x_1 - \mu)^2 p_1 + (x_2 - \mu)^2 p_2 + ... + (x_n - \mu)^2 p_n}$ $= \sqrt{\sum_{i=1}^n (x_i - \mu)^2 p_i}$

x	P(X = x) [sometimes written $P(x)$]	xp
0	0.11	0(0,11)=0 1(0.32)=0.37
1	0.32	((0.32)=0.37
2	0.43	2(0.33) = 0.96
3	0.10	3(0,0)=0.3
4	0.04	0, 6

Example 4: Calculate the mean and standard deviation of the probability distribution.

Find	the mean:	···i) + ((0.32) +2 (0	.43) +3((0.10) + 4(0.04) = (1.64 = 1)
\sim	и= ЕСЛ- х-л	(x-x) ²	P(x)	(x - M) (x)
0	0-1.64 = -1.64 1-1.64 = -0.64	$(-1.64)^2 = 2.68\%$ $(-0.64)^2 = 0.40\%$	Ø.\\ 0.32	2.6896 (0.11) = 0.295856 0.131072
2	2-1.64 = 0.36	(0.2)2=0.1296	0.43	0.055728
3	3 - 1.64 = 1.36 a - 1.64 = 2.36	$(2.36)^2 = 5.5696$	0.04	0. 18496 0. 222784
4		1	l	sum: 0,8904

Example 5: Use the frequencies to construct a probability distribution for the random variable *X*, which represents the number of games bowled by customers at a bowling alley. Calculate the mean and standard deviation of *X*.

_		
	Number of Games	Frequency
	1	37
	2	45
	3	29
	4	12
	5	Δ

Example 5: Use the frequencies to construct a probability distribution for the random variable X, which represents the number of games bowled by customers at a bowling alley. Calculate the mean and standard deviation of X.

Number of Games	Frequency	Relative Frequercy
1	37	37/127
2	45	45/127
3	29	45/127
4	12	(2/127
5	4	4/127

N= 127

we use the relative frequencies to assign the probabilities in our probability distribution:

the chould	check that the
probabilities	add up to 1)

Mean

$$\frac{1}{127} = 1 \left(\frac{31}{127} \right) + 2 \left(\frac{45}{127} \right) + 3 \left(\frac{29}{127} \right) + 4 \left(\frac{12}{127} \right) + 5 \left(\frac{4}{127} \right)$$

$$= \frac{1}{127} \left(1(37) + 2(45) + 3(29) + 4(12) + 5(4) \right) \qquad [factor out iz_7]$$

$$= \frac{1}{127} \left(281 \right) = \frac{282}{127} \approx 2.2205 \quad \text{a store in calculator, if}$$

$$= \frac{1}{127} \left(281 \right) = \frac{282}{127} \approx 2.2205 \text{ a store in calculator, if}$$

$$= \frac{1}{127} \left(281 \right) = \frac{282}{127} \approx 2.2205 \text{ a store in calculator, if}$$

$$= \frac{1}{127} \left(281 \right) = \frac{282}{127} \approx 2.2205 \text{ a store in calculator, if}$$

$$\frac{\chi}{\chi - \mu} \frac{(\chi - \mu)^2}{(\chi - \mu)^2} \frac{P(\chi)}{(\chi - \mu)} \frac{(\chi - \mu)^2}{p(\chi)} = \sqrt{0} = \sqrt{0$$