9.5.1

9.5: Hypothesis Tests for One Population Mean When ¢ is Unknown

In practice, when we are using a sample to make inferences about the population mean,
it is rare for us to know the population standard deviation.

Instead, we must use the sample standard deviation, S, as a point estimate of the population
standard deviation, o .

X—p

o

When using s as an estimate for o, we cannot use a z-test, because is not normally

distributed.
The t-test for one population mean:
When using S as an estimate for o, we use the Student t-distribution.

In order to use this procedure, we need to know (or be able to reasonably assume) that the
variable of interest follows a normal distribution, or we must have a large sample size (n >30).

In addition, the sample should be randomly obtained, observations within the sample must be
independent of one another. This means that if we have a sample size that is more than 5% of the
population, we should multiply the standard error by a finite population correction factor,

N—n
n-1

. (In this class, I do not anticipate that we will encounter this situation.)
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Hypothesis Testing for a Population Mean:

Step 1: Determine the significance level « .

Step 2: Determine the null and alternative hypotheses.

Two-Tailed Test Left-Tailed Test Right-Tailed Test

(most common) (rare) (rare)
Ho:pe=u, Ho = u, Ho:pe =,
Hy o p# Hy < g Hy:p>

o o
X %
s \\\{ l/été ,//// \/

{/ >
Rejection Region Rejection Region Rejection Region

Note: One tailed tests assume that the scenario not listed ( 2 > 4, for a left-tailed test or

Mo= \bandamark.

< u, for aright-tailed test) is not possible or is of zero interest.

Step 3: Use your « level and hypotheses, sketch the rejection region.

- X -
Step 4: Compute the test statistic t = s £,

0

Step 5: Use a table (Table IV, on page Z=) to determine the critical value for t associated with
your rejection region. k-G, A=)

Step 6: Determine whether the value of t calculated from your sample (in Step 3) is in the
rejection region.

e Iftisin the rejection region, reject the null hypothesis.
e Iftisnotin the rejection region, do not reject the null hypothesis.

Step 7: State your conclusion.
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Example 1: The normal human body temperature is widely accepted to be 98.6°F and can be
assumed to follow a normal distribution. A medical researcher wants to know \Qzlg_gg}er a certain
geographical community of Native Alaskans s mean body temperature & 98.6°F. A sample
of 20 members of the Native Alaskan geographical community resulted in a mean body
temperature of 98.3°F with a standard deviation of 0.7°F. Perform an appropriate hypothesis
test at the 95% confidence level.
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Example 2: The average amount of lead in the blood of young children is 2 micrograms per B g.(goF
deciliter (mcg/dL). A city has recently changed its water supply, and there have been widespread

reports of increased lead levels in the water. A concerned doctor wants to dig into the city’s ]
medical records to find out whether the children in the city have blood lead levels\above|the 6 v ~Nouled
average level of 2 mcg/dL. In a sample of 35 children, she found a mean lead level of 2.60

mcg/dL with a standard deviation of 1.9 mcg/dL. Perform an appropriate hypothesis test at the

o,
95% confidence level. Saum < h{—o
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Example 3: Suppose a manufacturer claims on the label that a package contains 8 ounces of
potato chips. A customer (or a FDA analyst) buys 50 bags of chips, weighs them on a high-
accuracy scale, and obtains a sample mean of 7.89 ounces with a sample standard deviation of
0.2 ounces. Does this sample provide evidence that the manufacturer’s labeling may be
inaccurate? Use the o =0.10 level of significance. S F“* o
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Example 4: Suppose a manufacturer claims on the label that a package contains 8 ounces of
potato chips. Again, a customer (or a FDA analyst) wonders whether the package size is
k ¢ /$0) accurate. This time, the analysist only buys 10 bags of chips, and obtains a sample mean of 7.89 ¢
* "~ ounces with a sample standard deviation of 0.2 ounces. Does this sample provide evidence that
the manufacturer’s labeling may be inaccurate? Use the o =0.10 level of significance.
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