Supplement: Basic Set Theory

Definition: A set is a well-defined collection of objects. Each object in a set is called an *element* of that set. Set of all U.S. alizers living in the U.S. wright

Examples of sets: Set of all positive integers set of students enrolled in this class set of NBA players Not sets: collection Set of all tall men All cut dogs

Sets can be finite or infinite.

Examples of finite sets:

Examples of infinite sets:
Sut of infractors between O and I
$$f = \frac{1}{2}$$

Notation:
Notation:
Notation:
Notation:
Ne usually use capital letters for sets.
We usually use lower-case letters for elements of a set.
 $a \in A$ means a is an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of the set A .
 $a \notin A$ means a is not an element of all x such that $P(x)$ is true". (called rule notation or set rotation.
Example: $S = \{x \mid x \text{ is an even positive integer}$ means $S = \{2, 4, 6, 8, ...\}$
 $a (A)$ means the number of elements in set A .
 $a (A)$ means the number of elements in set A .
 $a (A)$ means the number of elements in set A .
 $a (A)$ $A = A$ if A is an even positive integer in the same elements.
Definition: We say two sets are equal if they have exactly the same elements.

Subsets:

Definition: If each element of a set A is also an element of set B, we say that A is a subset of B. This is denoted $A \subseteq B$ or $A \subset B$. If A is not a subset of B, we write $A \not\subset B$.

KSB or ACB

<u>Definition</u>: We say A is a proper subset of B if $A \subseteq B$ but $A \neq B$. (In other words, every element of A is also an element of B, but B contains at least one element that is not in A.)

Note on notation: Some books use the symbol \subset to indicate a proper subset. Some books use \subset to indicate any subset, proper or not.

Definition: The set of all elements under consideration is called the *universal set*, usually denoted U. Example: If you're dealing with sets of real numbers, then U is the set of all real numbers. So "Wednesday" would not be an element of U, but 5.7 would be in U.

Example 1: Consider these sets.

$A = \{1, 2, 3, 4, 5, 6\}$	AS B
$B = \{1, 2, 3, 4, 5, 6, 7, 8\}$	CEB
$C = \{1, 3, 5, 2, 4, 6\}$	A=C

Note:

- \emptyset is a subset of every set. (i.e. $\emptyset \subset A$ for every set A.)
- Every set is a subset of itself. (i.e. $A \subseteq A$ for every set A.) •

Example 2: List all subsets of $\{1, 2, 3\}$. f1,23, {1,33, f2,33, {13, 23, {33, p, f1,2,3}

Note: If a set has *n* elements, how many subsets does it have? 2^{n} So set $\{1,2,3\}$ (or set $\{4,5,6\}$) Set operations: has $2^3 = 8$ subsets

- Union \cup : $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ •
- Key word: OR Intersection \cap : $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ ٠

• Complement A' or
$$A^c$$
 or $A^-: A' = \{x \in U \mid x \notin A\}$.
A' or A' or A' Vey word: NOT

Note: $A \subseteq (A \cup B)$ and $B \subseteq (A \cup B)$. $(A \cap B) \subseteq A$ and $(A \cap B) \subseteq B$.

<u>Definition</u>: We say that A and B are *disjoint sets* if $A \cap B = \emptyset$. (not possible to be in both A and B) **Example 3:** $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ HOK = 51,33 $H = \{1, 3, 5, 7\}$ (hintersect K) (must be in both H and K $K = \{1, 2, 3\}$ $J = \{2, 4, 6, 8\}$ $HUK = \{1,3,5,7,2\} = \{1,2,3,5,7\}$ $L = \{1, 2\}$ (nunior K JUK= {1,2,3,4,6,8]

$$(4 \text{ complement})$$

 $K' = \{4, 5, 6, 7, 8\}$, $H' = \{2, 4, 6, 8\}$
 $Pur book writes Net K$

Venn Diagrams: These help us visualize set relationships and operations.

Example 4: Draw Venn diagrams for $A \cup B$, $A \cap B$, A^{C} , B^{C} , $(A \cap B)^{C}$, and $(A \cup B)^{C}$.

JNK = 123

