1.2: Finding Limits Graphically and Numerically

Limit of a function:

We read this as "the limit of f(x), as x approaches a, is equal to L."

Alternative notation: $f(x) \rightarrow L$ as $x \rightarrow a$. (f(x) approaches L as x approaches a)

Finding limits from a graph:

1.2.2

Finding limits numerically:

Example 4: For the function $f(x) = \frac{x-5}{x^2-25}$, make a table of function values corresponding to values of x near 5. Note: F(5) is undefined (zevo denominator)

Use the table to estimate the value of $\lim_{x\to 5} \frac{x-5}{x^2-25}$.

$$\frac{\chi}{4.9} = \frac{4.5}{\sqrt{2^2-25}} = \frac{-1}{-9} = 0.1111$$

$$\frac{4.5}{4.9} = \frac{4.5}{\sqrt{2^2-25}} = \frac{1}{-9} = 0.10526$$

$$4.9 = \sqrt{10} \frac{1}{\sqrt{2^2-25}} = \frac{1}{\sqrt{2}} = 0.10526$$

$$4.9 = \sqrt{10} \frac{1}{\sqrt{2^2-25}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{$$

<u>Common reasons $\lim_{x\to c} f(x)$ may not exist:</u>

1. f(x) approaches a different value when approached from the left of *c*, compared to when approached from the right of *c*.

2. f(x) increases or decreases without bound as x approaches c.

3. f(x) oscillates between two values as x approaches c.

The formal (epsilon-delta) definition of a limit:

Definition:

Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then $e \circ r \in e \circ e$

$$\lim_{x \to a} f(x) = L$$

if for every number $\varepsilon > 0$, there is a number $\delta > 0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - a| < \delta$.

S: delta (lover-case)

Example 8: How close to 3 must we take x so that 6x-7 is within 0.1 of 11?

Example 9: How close to 4 must we take x so that $x^2 - 2$ is within 0.01 of 14?

Example 10: Prove that $\lim_{x \to 4} (2x-5) = 3$ using the definition of a limit.

Example 11: Prove that $\lim_{x\to -3} (5x+1) = -14$ using the definition of a limit.

Example 12: Prove that $\lim_{x\to 3} x^2 = 9$ using the definition of a limit.

Example 13: Prove that $\lim_{x\to 2} (x^2 - x + 6) = 8$ using the definition of a limit.