1.2.1
1.2: Finding Limits Graphically and Numerically

Limit of a function:

Definition of a Limit;

ﬂZW\ fey= L

lim f(x)=L N—>» &

The statement above means that we can make the values of f(x) arbitrarily close to L by taking X
to be sufficiently close to a but not equal to a.

We read this as “the limit of f(X), as X approaches a, is equal to L.”

Alternative notation: f(X) > L as x —>a. ( (X) approaches L as X approaches a)

Finding limits from a graph:
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1.2.2

Example 2:
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Example 3: Graph the function. Use the graph to determine lin} f(x) and lin£11 f(x).
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1.2.3
Finding limits numerically:

Example 4: For the function f(x)= 2(_25 , make a table of function values corresponding to
X —_

Nete: T¢9) = wndding

values of X near 5.

. . X—=5
Use the table to estimate the value of lim
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1.2.4

Common reasons lim f (X)_may not exist:
X—>C

1. f(x) approaches a different value when approached from the left of ¢, compared to when
approached from the right of c.

2. f(X) increases or decreases without bound as X approaches C.

3. f(x)oscillates between two values as X approaches C.

The formal (epsilon-delta) definition of a limit:

Definition:

Let f be a function defined on some open interval that contains the number a, except possibly at a
itself. Then € or & 2p=idon

lim f(x)=L g—- ) M—\-o\ (Jeurc-cas

X—a

if for every number & > 0, there is a number ¢ > 0 such that

2 )

|f(X)—L|<g whenever 0<|x—a|<5.
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Example 7: (6

1.2.5

Example 8: How close to 3 must we take X so that 6x—7 is within 0.1 of 11?

Example 9: How close to 4 must we take X so that x> =2 is within 0.01 of 14?
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1.2.6

Example 10: Prove that lin}(2x —5) =3 using the definition of a limit.

Example 11: Prove that lirn3 (5x+1) =—14 using the definition of a limit.



1.2.7

Example 12: Prove that lirr31 x> =9 using the definition of a limit.
X—>

Example 13: Prove that lin}(x2 —X+6) =8 using the definition of a limit.



