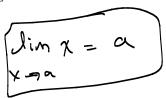
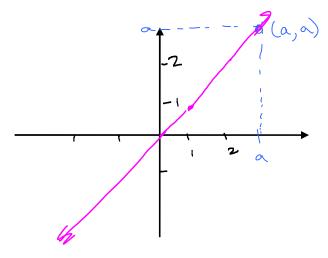
1.3: Evaluating Limits Analytically

Some basic limits:

Example 1: Determine $\lim_{x\to a} x$.

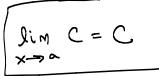
Have, f(x) = x Let's graph y= x.

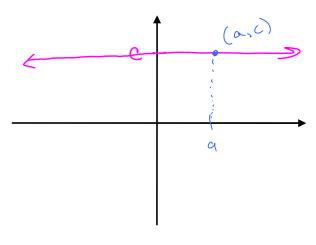




Example 2: Determine $\lim_{x\to a} c$.

Craph y= C. Here, f(x) = C





Laws (or properties) of limits:

Limit Laws:

Suppose that the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$
 if c is a constant

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$$

6. $\lim_{x\to a} [f(x)]^{n/p} = [\lim_{x\to a} f(x)]^{n/p}$, if n and p are integers with no common factor, $p\neq 0$, and provided that $[\lim_{x\to a} f(x)]^{n/p}$ is a real number.

Combining the facts that $\lim_{x\to a} c = c$, $\lim_{x\to a} x = a$, and the limit laws shows that $\lim_{x\to a} x^n = a^n$ where n is a positive integer. This lets us use direct substitution for evaluating limits of polynomials.

Direct Substitution Property:

If f is a polynomial or a rational function and a is in the domain of f, then $\lim_{x\to a} f(x) = f(a)$.

Example 3: Determine $\lim_{x\to 3} (4x^2 - 2x + 1)$.

$$\lim_{x\to 3} (4x - 2x + 1) = 4(3)^2 - 2(3) + 1 = 36 - 6 + 1 = 31$$

Example 4: Determine
$$\lim_{x\to -2} \frac{2x^2-6x+5}{x-3}$$
.

Example 5: Determine $\lim_{x \to 2} \sqrt[3]{4x - x^4}$.

$$\sqrt{\frac{3}{4}} = \sqrt{\frac{4}{2}} = \sqrt{\frac{4}{2}} = \sqrt{\frac{3}{8}} = \sqrt{\frac{2}{3}} = \sqrt{\frac$$

Limit Law #6 (used in the previous example) is a special case of the following theorem:

Limit of a Composite Function

If f and g are functions such that $\lim_{x\to a} g(x) = L$ and $\lim_{x\to L} f(x) = f(L)$

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(L)$$

Example 6: Determine $\lim_{x\to 4} \frac{x^2 + x - 20}{x^2 - 7x + 12}$.

Jim x2+x-20 x-34 x2-7x+12 $= \lim_{x \to 4} \frac{(x+5)(x-4)}{(x-5)(x-3)} = \lim_{x \to 4} \frac{x+5}{x-3} = \frac{4+5}{4-3}$ = = = [9]

If we try direct substitution, we get $\frac{0}{0}$, which is not defined. This is an example of a o indeterminate Forms

Example 7: Determine $\lim_{x\to -2} \frac{\sqrt{x+3}-1}{x+2}$.

Direct substitution => $\frac{\sqrt{-2+3} - 1}{-2+2} \Longrightarrow \frac{0}{0}$ indeferminate $\lim_{y\to -2} \frac{\sqrt{x+3}-1}{x+2} = \lim_{y\to -2} \frac{\sqrt{x+3}-1}{x+2} \left(\frac{\sqrt{x+3}+1}{\sqrt{x+2}+1} \right)$

$$= \lim_{\chi \to -2} \frac{\chi_{4}\chi_{2}}{(442)(543)} = \lim_{\chi \to -2} \frac{1}{5\chi_{4}\chi_{3}} = \frac{1}{5(1+1)} = \frac{1}{5($$

Define absolute value. Letine abstract value.

If f(x) = |x|, how is $f(x) = \frac{1}{x}$, how if $x \ge 0$ $|x| = f(x) = \frac{1}{x}$ $|x| = f(x) = \frac{1}{x}$ If x < 011th ed 12#70/ Lim /x+1/-/x-1/ Let for = \frac{|x+1|-|x-1|}{\sqrt{}} For x>0, $f(x) = \frac{x+1-(-(x-1))}{x} = \frac{x+1-(-x+1)}{x}$ $f \times 40 \quad f(x) = \frac{x+1-(-(x-1))}{x} = \frac{x+1+x-1}{x} = \frac{2x}{x} = 2$ Near 0 So lim f(x) = [2]

Example 8: Determine
$$\lim_{x\to 3} \frac{x+4}{x-3}$$
.

Limits of trigonometric functions:

These can also be evaluated through direct substitution, thanks to the two limits below, along with the limit laws.

$$\lim_{x \to a} \sin x = \sin a \qquad \lim_{x \to a} \cos x = \cos a$$

Example 9: Determine
$$\lim_{x \to \frac{\pi}{3}} \tan x$$
. $\lim_{x \to \frac{\pi}{3}} \frac{\tan x}{\cos x} = \lim_{x \to \frac{\pi}{3}} \frac{\sin x}{\cos x} = \lim_{x \to \frac{\pi}{3}} \frac{\sin$

Example 10: Determine
$$\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

$$\cos \frac{\pi}{4} = \frac{\cos x - \sin x}{\cos(2x)}$$

The extremal function:

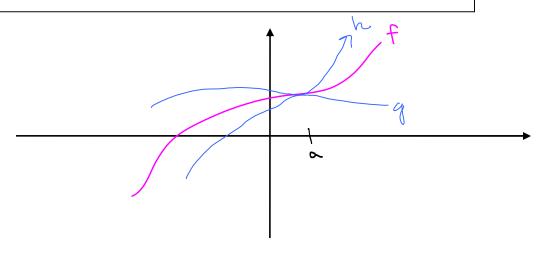
$$\cos \frac{\pi}{4} = \frac{\cos x}{\cos(2x)}$$

T

The Squeeze (or Sandwich or Pinching) Theorem:

If $g(x) \le f(x) \le h(x)$ for all x in some open interval containing near \emptyset , except possibly at Witself. If $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$, then

lin fox) = L.



Example 11: Use the Squeeze Theorem to show that $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Two important limits:

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right) = 1$$

$$\lim_{x \to 0} \left(\frac{1 - \cos x}{x} \right) = 0$$

Note: This means that
$$\lim_{x\to 0} \left(\frac{x}{\sin x}\right) = 1$$
, $\lim_{x\to 0} \left(\frac{\cos x - 1}{x}\right) = 0$, and $\lim_{x\to 0} \left(\frac{x}{1 - \cos x}\right)$ does not exist.

$$\lim_{x\to 0} \left(\frac{x}{\sin x}\right) = \lim_{x\to 0} \left(\frac{\cos x \tan x}{x}\right) = \lim_{x\to 0} \left(\frac{\sin x}{x}\right) = \lim_{x$$

Example 13:
$$\lim_{x \to \frac{\pi}{2}} \left(\frac{\cos x}{\cot x} \right)$$
 work out using direct substitution

Example 14:
$$\lim_{x\to 0} \left(\frac{1-\cos(5x)}{x}\right)$$
 $\lim_{x\to 0} \left(\frac{1-\cos(5x)}{x}\right) = \lim_{x\to 0} \left(\frac{1-\cos(5x)}{x}\right) \left(\frac{5}{5}\right) = \frac{5}{1}\lim_{x\to 0} \left(\frac{1-\cos(5x)}{5x}\right)$

Note: $a \le x \to 0$, $5x \to 0$ also

 $\lim_{x\to 0} \left(\frac{1-\cos(5x)}{x}\right) = \frac{5}{5x}\lim_{x\to 0} \left(\frac{1-\cos(5x)}{5x}\right) = \frac{5}{5x}\lim_{x\to 0} \left(\frac{1-\cos(5x)}{5x}\right)$

Example 15:
$$\lim_{x\to 0} \left(\frac{\sin(3x)}{7x}\right)$$

$$\lim_{x\to 0} \left(\frac{\sin(3x)}{7x}\right) = \lim_{x\to 0} \left(\frac{\sin(3x)}{7x}\right) \left(\frac{3}{3}\right) = \frac{1}{7} \cdot \frac{3}{1} \lim_{x\to 0} \left(\frac{\sin(3x)}{3x}\right)$$

$$\lim_{x\to 0} \left(\frac{\sin(3x)}{7x}\right) = \lim_{x\to 0} \left(\frac{\sin(3x)}{7x}\right) = \frac{3}{7} \cdot \lim_{x\to 0} \left(\frac{\sin(3x)}{3x}\right) = \frac{3}{7} \cdot$$

Example 16:
$$\lim_{x\to 0} \frac{\sin(3x)}{\sin(2x)}$$

$$\lim_{\chi \to 0} \frac{\sin(2\chi)}{\sin(2\chi)} = \lim_{\chi \to 0} \frac{\sin(3\chi)}{\sin(2\chi)} \cdot \frac{\chi}{\chi} = \lim_{\chi \to 0} \frac{\sin(3\chi)}{\chi} \cdot \frac{\chi}{\sin(2\chi)} \left(\frac{2\chi}{2}\right) \left(\frac{3}{2}\right)$$

$$= \frac{3}{1} \cdot \lim_{\chi \to 0} \frac{\sin(3\chi)}{3\chi} \cdot \frac{2\chi}{\sin(2\chi)} = \frac{3}{2} \lim_{\chi \to 0} \frac{\sin(3\chi)}{3\chi} \lim_{\chi \to 0} \frac{2\chi}{\sin(2\chi)}$$

$$= \frac{3}{1} \cdot \lim_{\chi \to 0} \frac{\sin(3\chi)}{3\chi} \cdot \frac{2\chi}{\sin(2\chi)} = \frac{3}{2} \lim_{\chi \to 0} \frac{\sin(3\chi)}{3\chi} \lim_{\chi \to 0} \frac{2\chi}{\sin(2\chi)}$$

$$= \frac{3}{2} \lim_{\chi \to 0} \frac{\sin(3\chi)}{3\chi} \lim_{\chi \to 0} \frac{2\chi}{\sin(2\chi)} = \frac{3}{2} \lim_{\chi \to 0} \frac{3\chi}{\sin^3(4\chi)} = \frac{$$

Example 18: $\lim_{x\to 0} \frac{\cot 3x}{\csc 8x}$