2.1: The Derivative and the Tangent Line Problem

What is the definition of a “tangent line to/a curve”?
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To answer the difficulty in writing a clear definition of a tangent line, we can define it as the
limiting position of the secant line as the second point approaches the first.

Definition: The tangent line to the curve y = f(X) at the point (a, f(a)) is the line through P
with slope Y

m = lim+ X =1 @
X—a X—a

provided this limit exists.

Equivalently,

m = lim

lim provided this limit exists.

fa+h)—f(a)
h

Note: If the tangent line is vertical, this limit does not exist. In the case of a vertical tangent,
the equation of the tangent line is Xx=a.

Note: The slope of the tangent line to the graph of f at the point (a, f(a)) is also called the
slope of the graph of fat x=a.

How to get the second expression for slope: Instead of using the points (a, f(a)) and (X, f (X))
on the secant line and letting X — a, we can use (a, f(a)) and (a+h, f(a+h)) andlet h—0.
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Example 1: Find the slope of the curve y=4x"+1 at the point (3,37). Find the equation of
the tangent line at this point. TN\
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Example 2: Find an equation of the tangent line to the curve y = X" at the point (1,1). *“T:J)
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Example 3: Determine the equati e tangent ln%e to f(x)= JX at the' pomt where x=2. = 3




The derivative:

The derivative of a function at X is the slope of the tangent line at the point (X, f (x)). It is also
the instantaneous rate of change of the function at x.

Definition: The derivative of a function f at X is the function f' whose value at X is given by
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f'(x) = lim

lim , provided this limit exists.
>

f(x+h)—f(x)
h

The process of finding derivatives is called differentiation. To differentiate a function means to
find its derivative.

Equivalent ways of defining the derivative:

f '(x) = lim fFx+ax)- (%) (Our book uses this one. It is identical to the

Ax—0 AX definition above, except uses Ax in place of h.)
100 = lim W= 1)
W—X W— X

(Gives the derivative at the specific point where X =a.)

X—a

f '(a)=1imM
X—a

@ =i

f(a+ hr)] -f(a) (Gives the derivative at the specific point where X =a.)
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. Determine g'(X) and g'(3)

Example 4: Suppose that g(x) =
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Example 5:  Suppose that f(X)=+/x*+1. Find the equation of the tangent line at the point

where x=2.
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Example 6: Determine the equation of the tangent line to f(X)=— .
X"+



Summary:

The slope of the secant line between two points is often called a difference quotient. The
difference quotient of f at a can be written in either of the forms below.

f(x)—f(a) f(a+h)y—f(a)
X—a h '

Both of these give the slope of the secant line between two points: (X, f (X)) and (a, f(a)) or,
alternatively, (a, f(a)) and (a+h, f(a+h)).
The slope of the secant line is also the average rate of change of f between the two points.

The derivative of f at a is:

1) the limit of the slopes of the secant lines as the second point approaches the point (a, f(a)).

2) the slope of the tangent line to the curve y = f(x) at the point where x=a. ( (*3Q \U\ C O‘M ‘&«M
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3) the (instantaneous) rate of change of f with respect to X at a. /L

4) limM (limit of the difference quotient)
X—>a X — a

5) lim f(a+h)-f(a)
h—0 h

(limit of the difference quotient)

Common notations for the derivative of y= f(x):

f'(x) d f(x) y' D, f(x) Yy Df (x)
dx dx
. DN
The notation L was created by Gottfried Wilhelm Leibniz and means Yy =1 . A ’i\;
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To evaluate the derivative at a particular number a, we write
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Differentiability:

Definition: A function f is differentiable at a if f '(a) exists. It is differentiable on an open
interval if it is differentiable at every number in the interval.

Theorem: If f is differentiable at a, then f is continuous at a.

Note: The converse is not true—there are functions that are continuous at a number but not
differentiable.
Note: Open intervals: (a,b), (—«,a), (a,%), (—©,©).

Closed intervals: [a,b], (-, a], [a,©), (—0,0).

To discuss differentiability on a closed interval, we need the concept of a one-sided
derivative.

Derivative from the left: lim T0-1@
x—>d X—a

Derivative from the right: 1i fx-f@
X—a X —_ a

For a function f to be differentiable on the closed interval [a,b], it must be differentiable
on the open interval (a,b). In addition, the derivative from the right at a must exist, and
the derivative from the left at b must exist.

Ways in which a function can fail to be differentiable:

1. Sharp corner

2. Cusp

3. Vertical tangent ('\r.u-\;u&\ Nina \'\:NJL um&nfwk do(u.,x
4. Discontinuity
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Example 7:
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Example 8:
f '(2):§, f'3)>f'(2),and f'(5)<0.

Sketch the graph of a function for which f(0)=2, f'(0)=-1, f(2)=1,




Use the graph of the function to draw the graph of the derivative.
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Example 9:
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Example 10: Use the graph of the function to draw the graph of the derivative.
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