2.2: Basic Differentiation Rules and Rates of Change

Basic differentiation formulas:

1.
$$\frac{d}{dx}(c) = 0$$
 for any constant c .
2. $\frac{d}{dx}(x^n) = nx^{n-1}$ for any real number n . (Nowly value)
3. $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}[f(x)]$
4. $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$
5. $\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)]$

Recall:

$$\sqrt[n]{x} = x^{\frac{1}{n}}$$

 $\frac{1}{x^n} = x^{-n}$

Example 4: Find the derivative of $f(x) = \sqrt[5]{x} + \frac{1}{x^2}$. f(x)= = x - 2x $f(x) = 5\sqrt{x} + \frac{1}{\sqrt{2}}$ Rewrib: f(x) = x = + x $=\frac{1}{5} \times -\frac{4}{5} - 2 \times$ $=\frac{1}{5x^{1/5}}-\frac{2}{x^3}$ **Example 5:** Find the derivative of $f(x) = \frac{2}{\sqrt[4]{x}}$. $f'(x) = J\left(-\frac{1}{4}\right)^{x} = \left[-\frac{1}{2}x^{2}\right] = -\frac{1}{5}\sqrt{3x^{4}} - \frac{2}{x^{3}}$ Example ($f(x) = \frac{2}{4x} = 2x^{+}$ **Example 6:** Find the derivative of $h(x) = (\sqrt{x})^{5}$. $h(x) = (x^{\frac{1}{2}})^{5} = x^{\frac{5}{2}}$ $h'(x) = \frac{5}{2}x^{\frac{3}{2}-1} = \frac{5}{2}x^{\frac{3}{2}} = \frac{5(x^{3})^{\frac{1}{2}}}{2} = \frac{5\sqrt{x^{3}}}{2}$ **Example 7:** Find the derivative of $f(x) = -\sqrt[3]{6x^4}$. $f'(x) = -3\sqrt{6}\sqrt{73}$ $= -3\sqrt{6}\sqrt{73}$ $= -3\sqrt{6}\sqrt{73}$ $f'(x) = -3\sqrt{6}\left(\frac{4}{3}x^{-1}\right) = -3\sqrt{6}\left(\frac{4}{3}x^{1/3}\right)$ or $\chi^{0} = (\chi^{0})^{0} = \sqrt{73}$ or $\chi^{0} = (\chi^{0})^{0} = \sqrt{73}$ or $\chi^{0} = (\chi^{0})^{0} = \sqrt{73}$ provided all are defined $f(x) = \frac{10}{x^{4}}$ $= -\frac{4}{3}\sqrt{6}\sqrt{2}$ $= -\frac{4\sqrt{3}\sqrt{6}}{3}$ fin = -31631x FCR= 10x-4 -4-1 F'(R) = -40x $= -40x^{-5} = \boxed{-\frac{40}{x^{5}}}$ $= -40\left(\frac{1}{X^5}\right)^{\frac{1}{2}}$

Example 9: Find the derivative of $g(x) = \frac{2\sqrt{x}}{7}$. $g(x) = \frac{1}{7}x^{1/2}$ $-\frac{1}{2}x$ $= \frac{1}{7}x^{-\frac{1}{2}}$ $g'(x) = \frac{2}{7} \cdot \frac{1}{7}x^{2}$ $= \frac{1}{7}x^{-\frac{1}{2}}$

$$z = \begin{bmatrix} 1 \\ -75\chi \end{bmatrix}$$

Example 10: Find the derivative of $f(t) = \frac{3}{4t^2} - \sqrt[3]{7t}$.

$$f(t) = \frac{3}{4}t^{2} - 373t^{3}$$

$$= \frac{3}{4}t^{2} - 37t^{3}$$

$$f'(t) = \frac{3}{4}(-2t^{3}) - 37(\frac{1}{3}t^{2}) = \begin{bmatrix} -\frac{3}{2t^{3}} - \frac{37}{33t^{2}} \\ -\frac{3}{2t^{3}} & -\frac{37}{33t^{2}} \end{bmatrix}$$

Example 11: Find the derivative of $f(u) = \frac{7u^3 + u^2 - 9\sqrt{u}}{u^2}$.

$$f(u) = \frac{7u^{3}}{u^{2}} + \frac{u^{2}}{u^{2}} - \frac{9u^{2}}{u^{2}}$$

= 7u³ + 1 - 9u^{-3/2}
= 7u³ + 1 - 9u^{-3/2}
f'(u) = 2lu² + 0 - 9(-3/2)u^{-3/2} = 2lu² + 27/2u^{3/2} = 2lu² + 27/2u^{3/2}

Example 12: Find the equation of the tangent line to the graph of $f(x) = 3x - x^2$ at the point (-2, -10). f'(-1) = 3 - 2(-2) = 3 + 4 = 7 W = f'(-2) = 3 - 2(-2) = 3 + 4 = 7 $V - V_1 = W(X - V_1)$ $V_2 - (-10) = 7(X - (-2))$ $V_3 + 10 = 7(X + 1)$ $V_4 + 10 = 7X + 14$ V = 7X + 4 eqn of favor line **Example 13:** Find the point(s) on the graph of $f(x) = x^2 + 6x$ where the tangent line is horizontal.

horizontal.
Slope of horizontal five is 0, so we want
$$P'(x) = 0$$
.
 $F'(x) = 2x+6$
Set $f'(x) = 0$: $2x+6=0$
 $2x=-6$
Nued the ordered pairs, so $x=-3$
First the y-value: $f(-3) = (-3)^2 + (-3) = 9 - (8 = -9)$.
Tangent line
 $Torretore the point (-3, -9)$.

<u>Definition</u>: The *normal line* to a curve at the point P is defined to be the line passing through P that is perpendicular to the tangent line at that point.

Example 14: Determine the equation of the normal line to the curve
$$y = \frac{1}{x}$$
 at the point $\left(3, \frac{1}{3}\right)$.
 $y = \frac{1}{x} = x^{-1}$
 $\frac{dy}{dx} = -\sqrt{x^{2}} = -\frac{1}{x^{2}}$
Slope of tangent line: $\frac{dy}{dx}\Big|_{x=3} = \left(-\frac{1}{x^{2}}\right)\Big|_{x=3} = -\frac{1}{3^{2}} = -\frac{1}{9}$
Slope of normal line: 9.
 $y - y_{1} = vn(x - x_{1})$
 $y - \frac{1}{3} = 9(x - 3)$
 $y - \frac{1}{3} = 9(x - 3)$
 $y - \frac{1}{3} = 9x - 27$
Derivatives of trigonometric functions:
 $y = 9x - \frac{81}{3} + \frac{1}{3}$
 $\frac{d}{dx}(\sin x) = \cos x$
 $\frac{d}{dx}(\sec x) = -\csc x \cot x$
 $\frac{d}{dx}(\csc x) = -\sec x \tan x$
 $\frac{d}{dx}(\tan x) = \sec^{2} x$
 $\frac{d}{dx}(\cot x) = -\csc^{2} x$
Note: full the concurctions have a minus sign.

2.2.6

The <u>average rate of change</u> of y = f(x) with respect to x over the interval $[x_0, x_1]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0 + h) - f(x_0)}{h}, \text{ where } h = x_1 - x_0 \neq 0.$$

This is the same as the slope of the secant line joining points $P(x_0, f(x_0))$ and $Q(x_1, f(x_1))$.

The <u>instantaneous rate of change</u> (or, equivalently, just the <u>rate of change</u>) of f when x = a is the slope of the tangent line to graph of f at the point (a, f(a)).

Therefore, the instantaneous rate of change is given by the <u>derivative</u> f'.

Recall: Valume of Sphere: V= + Tr 3

Example 19: Find the average rate of change in volume of a sphere with respect to its radius r as r changes from 3 to 4. Find the instantaneous rate of change when the radius is 3.

Alterage rate of change =
$$\frac{N}{Nr} = \frac{V_2 - V_1}{V_2 - V_1} = \frac{V(4) - V(5)}{4 - 3}$$

(1 = valuary
(1 = valuar)
(2 = valuar

5

Velocity:

If the independent variable represents *time*, then the derivative can be used to analyze motion.

If the function s(t) represents the position of an object, then the derivative $s'(t) = \frac{ds}{dt}$ is the velocity of the object.

(The velocity is the instantaneous rate of change in distance. The average velocity is the average rate of change in distance.) $w_1 + w_2 + dw_2$

Example 21: A person stands on a bridge 40 feet above a river. He throws a ball vertically upward with an initial velocity of 50 ft/sec. Its height (in feet) above the river after t seconds is $s = -16t^2 + 50t + 40$.

- a) What is the velocity after 3 seconds?
 - b) How high will it go?
 - c) How long will it take to reach a velocity of 20 ft/sec?
 - d) When will it hit the water? How fast will it be going when it gets there?

(a)
$$V(t) = \frac{dw}{dt} = -32t + 50 \times (also equal to $L'(t)$)
 $L'(t) = -32t + 50 \times (also equal to $L'(t)$)
 $L'(t) = -32t + 50$
 $L'(t) = -32t + 50$$$$

(5) At maximum height, velocity =
$$v(t) = \lambda'(t) = 0$$
:
Set $4'(t) = 0^{\circ}$. $-32t + 50 = 0$
 $50 = 32t$
 $\frac{59}{32} = t$
 $L = \frac{25}{32} = 1.5625$ time at mox

$$-32t = -30$$

$$t = \frac{-30}{-32} = \frac{15}{16}$$

$$Reaches do ft/see after $\frac{15}{16}$ Second S
$$t = \frac{-50 \pm 1(60)^2 - 4(-16)(40)}{2(-16)}$$

$$t = \frac{-50 \pm 1(60)^2 - 4(-16)(40)}{2(-16)}$$$$

Event
$$t = 3.785$$
 sec
 $t = -0.66$ sec
 $t = 3.785$ into
 $t = 3.785$ into
 $1(t) = -32t + 50$
 $2.2.8$
 $1(t) = -32(3785) + 50 = -71.12$ f
 $(3.785) = -32(3785) + 50 = -71.12$ f
 $(3.785) = -32(3785) + 50 = -71.12$ f
 $(3.785) = -32(3785) + 50 = -71.12$ f
 $(1.12 + 73)$
air resistance is neglected, its height from the ground (in feet) after t seconds is given by
 $h(t) = -16.1t^2 + 73t$.
a. The velocity after 2 seconds.
b. How high will the bullet go?
c. When will the bullet reach the ground?
d. How fast will it be traveling when it hits the ground?
Velocity is $h'(t) = -31.2t + 73$

(a)
$$h'(2) = -32.2(2) + 73 = 8.66 \text{ ft/sec}$$

(b) At more height, $h'(t) = 0$:
 $-32.2t = -73$
 $t = \frac{-73}{-32.2}$ sec ≈ 2.267 sec
Mare height = $h(\frac{73}{32.2}) = -16.1(\frac{73}{32.2})^2 + 73(\frac{73}{32.2}) \approx 82.748 \text{ ft}$
(c) $t = h(t) = 0$:
 $-16.1t^2 + 73t = 0$
 $t = -13$
 $t = -73 \text{ ft/sec}$
 $t = -73 \text{ ft/sec}$

C

Example 23: Suppose the position of a particle is given by $f(t) = t^4 - 32t + 7$. What is the velocity after 3 seconds? When is the particle at rest?

$$f'(t) = 4t^3 - 32$$

after 3 seconds, Nedocity is $f'(3) = 4(3)^3 - 32 = 16$ units/sec
To find when particle is at rest, set $f'(t) = 0$:
 $4t^3 - 32 = 0$
 $4t^3 = 32$
 $t^3 = 8$
 $t = 2$ seconds.
Particle is at visit when $t = 2$ seconds.