2.2.1

2.2: Basic Differentiation Rules and Rates of Change

Basic differentiation formulas:

1. di(c) =0 for any constant C.
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2. di(x“) =nx"" for any real number n. (Vouﬂ\f V‘\AQ,L\
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Example 2: Find the derivative of f(X)=5x"—x" +12X. % ) = ow.
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Recall:
Yx = xt
|
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Example 4: Find the derivative of f(X)= Ix +i2 .
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Example 5: Find the derivative of f(Xx)=
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Example 6: Find the derivative of h(x)
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Example 7: Find the derivative of f(X)=—\/7 .
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Example 8: Find the derivative of f(Xx)= 1—4
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Example 9: Find the derivative of g(X) = 2\/_
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Example 10: Find the derivative of f(t)= iz 3t
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Example 11: Find the derivative of f(u)=7u +L:12_9\/U.
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Example 12: Find the equation of the tangent line to the graph of f(X)=3x—X" at the point
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Example 13: Find the point(s) on the graph of f(X)= x*+6X where the tangent line is

horizontal. .
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Definition: The normal line to a curve at the point P is defined to be the line passing through P
that is perpendicular to the tangent line at that point.

Example 14: Determine the equation of the normal line to the curve y = 1 at the point (3,%) .
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Derivatives of trigonometric functions: W= Ox— % 3
N —(sin X) = cos X —(csc X) = —csc Xcot X
% dx dx
ix (cos X) =—sin X ™ (sec X) =sec X tan X
X X
a (tan X) = sec’ X d (cotX) =—csc’ X
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Example 15: Find the derivative of y=2cosXx—4tanX. o
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Example 16: Find the derivative of y = %4‘ 3+t
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Example 17: Determine the equation of the tangent line to the graph of ====S8&% at the point
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Example 18: Find the points on the curve Yy = tan X—2x where the tangent Iine is horizontal.
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2.2.6

The derivative as a rate of change:

The average rate of change of y = f(x) with respect to X over the interval [X,, X, ] is

ﬂ_ f(X])_ f(xo)_ f(X0+h)— f(xo)
AX X=X, h

,where h=x-x,#0.

This is the same as the slope of the secant line joining points P(X,, f (x,)) and Q(x,, f(X)).

The instantaneous rate of change (or, equivalently, just the rate of change) of f when x=a is
the slope of the tangent line to graph of f at the point (a, f (2)).

Therefore, the instantaneous rate of change is given by the derivative f'.
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Example 19: Find the average rate of change in volume of a sphere with respect to its radius r
as I changes from 3 to 4. Find the instantaneous rate of change when the radius is 3.
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Example 20: Find the rate of change of the area of a circle with respect to (a) the diameter;
(b) the circumference. @ F\ZA p\ wrE i s d_V
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2.2.7

Velocity:

If the independent variable represents time, then the derivative can be used to analyze motion.

If the function s(t) represents the position of an object, then the derivative s'(t) = % is the

velocity of the object.

(The velocity is the instantaneous rate of change in distance. The average velocity is the average

rate of change in distance.) w l&\\‘\ " j
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Example 21: A person stands on a bridge 40 feet above a river. He throws a ball vertically A
upward with an initial velocity of 50 ft/sec. Its height (in feet) above the river after t seconds is
s =—16t> +50t +40. S dariredring, s
a) What is the velocity after 3 seconds? \
b) How high will it go?
c) How long will it take to reach a velocity of 20 ft/sec? ~ANAANA S
d) When will it hit the water? Hgw fast will it be going when it gets there? sy
@ \l(“')’ AN _-?DQ—'E-\":)O QaLsa QaDw& %@‘(ﬁ)\
T dE S
A 22(2)«%p A =247 J
ot = \ c - . Y } (WJO
\& (?\b = & B ) JX(Q - _ 3("*%5 = ﬂ((n %Ar{gu_ So “* ‘S 0(30 Aj j‘_m>
- (Vvecaurt v TS Qe

@ PV NN \M.tfa\/e)“) \J.&gc,:\% =) = D)= o8
%L* u&-\&\: O.‘o -—’5%*%"—-@

59 = 2L
2 =¢
> > 5 dma o O
. 1S . P ‘ ~
L= B2 = \sG gk

P\k £z \ S5 <acconGy SG'L§ « 4D

2
6 (52D e

e A (S0 = \ oI
g 3© 2 (79.0622% | 7= ““";“;“M ”\'BW AEY=0
Lo ~ (O =A (©)= 20 @ s e
@ l_& « 60 =20 Sg_k A-L‘tj’/o e 2
~° oL = -0 0= Mk Dot £40
e e Doodeasie Toimd

£ % a2 -\—E"j(—\lh@&
—50 — o)
Condhes 30 Wleee ,&W@ £ = @L-\@jss-—;/

ey~ D ags



- 3 %5 Mo T i T pedoci®y,  plog
% i Z — 0,66 &=t S

- L o 2.2.8
B \JL-E\ :.L:L%‘“%'L -\ <,
QA= —22(3185%0
Example 22: Suppose a bullet is shot straight up at an initial velocity of 73 feet per second. If :

air resistance is neglected, its height from the ground (in feet) after t seconds is given by
h(t)=-16.1t> + 73t .

a. The velocity after 2 seconds.

b. How high will the bullet go?

c. When will the bullet reach the ground?

d. How fast will it be traveling when it hits the ground?
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Example 23: Suppose the position of a particle is given by f(t)=t*—32t+7. What is the
velocity after 3 seconds? When is the particle at rest?
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