3.5: Limits at Infinity

There are two types of limits involving infinity.

Limits at infinity, written in the form $\lim_{x\to\infty} f(x)$ or $\lim_{x\to\infty} f(x)$, are related to horizontal asymptotes.

<u>Infinite limits</u> (covered in Section 1.5) take the form of statements like $\lim_{x\to a} f(x) = \infty$ or $\lim_{x\to a} f(x) = -\infty$. Infinite limits generally result in vertical asymptotes.

When combined, these two types of limits involving infinity result in statements such as $\lim_{x\to\infty} f(x) = \infty$ or $\lim_{x\to\infty} f(x) = -\infty$, which describe the end behavior of graphs.

Limits at infinity:

Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x\to\infty}f(x)=L$$

means that the values of f(x) can be made arbitrarily close to L by taking x sufficiently large.

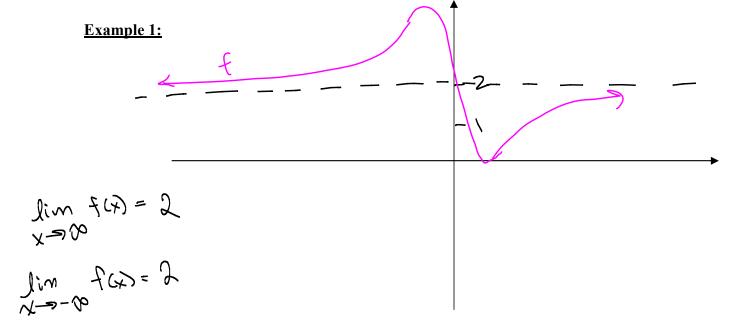
More precisely, $\lim_{x\to\infty} f(x) = L$ if, for every number $\varepsilon > 0$, there exists a corresponding number M > 0 such that for all x, $|f(x) - L| < \varepsilon$ whenever x > M.

Let f be a function defined on some interval $(-\infty, a)$. Then

$$\lim_{x \to -\infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by making x a sufficiently large negative number.

More precisely, $\lim_{x \to \infty} f(x) = L$ if, for every number $\varepsilon > 0$, there exists a corresponding number N < 0 such that for all x, $|f(x) - L| < \varepsilon$ whenever x < N.



Horizontal asymptotes:

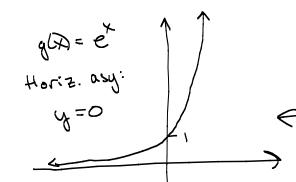
The line y = L is called a horizontal asymptote of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L \text{ or } \lim_{x \to -\infty} f(x) = L.$$

Example 2:

lin (arctan Gi) = To

lin (arton(x)) = - = -



$$y = tan^{-1}(x)$$

 $y = arctan x$

_ _ _ _

Horizantal asymptotes $y = \frac{T}{2}, y = -\frac{T}{2}$

Example 3: Determine
$$\lim_{x\to\infty} \frac{1}{x}$$
 and $\lim_{x\to\infty} \frac{1}{x}$.

As $x\to +\infty$, $\frac{1}{x}\to \frac{1}{x}$ and $\lim_{x\to\infty} \frac{1}{x}$.

So $\lim_{x\to -\infty} \frac{1}{x}=0$

As $x\to -\infty$, $\lim_{x\to -\infty} \frac{1}{x}=0$

As $x\to -\infty$, $\lim_{x\to -\infty} \frac{1}{x}=0$

Theorem: If
$$r > 0$$
 is a rational number, then $\lim_{x \to \infty} \frac{1}{x^r} = 0$. Also $\lim_{x \to \infty} \frac{1}{x^r} = 0$ if x^r is defined for all x .

Example 4: Determine $\lim_{x \to \infty} \left(9 + \frac{3}{x^4}\right)$

$$\lim_{x\to\infty} \left(9 + \frac{3}{x^4}\right) = \lim_{x\to\infty} 9 + 3\lim_{x\to\infty} \frac{1}{x^4} = 9 + 3(0) = \boxed{9}$$

To take advantage of this theorem when determining the limit at infinity of a quotient, divide numerator and denominator by the largest power of the variable in the denominator.

Example 5: Find
$$\lim_{x\to\infty} \frac{3-2x}{4x+6}$$
.

$$\lim_{x \to \infty} \frac{3-2x}{4x+6} = \lim_{x \to \infty} \frac{3-2x}{4x+6} \left(\frac{1}{x}\right) = \lim_{x \to \infty} \left(\frac{3}{x} - \frac{2x}{x}\right)$$

$$= \lim_{x \to \infty} \left(\frac{3}{x} - \frac{2}{x}\right) = \frac{0-2}{4+0} = \frac{-2}{4} = \left(-\frac{1}{2}\right)$$

Example 6: Find
$$\lim_{x\to\infty} \frac{2x^2 + 15x + 9}{5x^3 - 14}$$
 and $\lim_{x\to-\infty} \frac{2x^2 + 15x + 9}{5x^3 - 14}$.

$$\lim_{X \to \infty} \frac{2x^2 + 15x + 9}{5x^3 - 14} = \lim_{X \to \infty} \frac{2x^2}{5x^3} + \frac{15x}{x^3} + \frac{9}{x^3}$$

$$= \frac{0 + 0 + 0}{5 - 0} = \frac{0}{5} = 0$$

$$= \frac{0 + 0 + 0}{5 - 0} = \frac{0}{5x^3 - 14}$$

$$= \frac{0 + 0 + 0}{5 - 0} = \frac{0}{5x^3 - 14}$$

$$= \frac{0 + 0 + 0}{5x^3 - 14} = \frac{0}{5x^3 - 14}$$

$$= \frac{0 + 0 + 0}{5x^3 - 14} = \frac{0}{5x^3 - 14}$$

Example 7: Find the horizontal asymptote (if any) of $h(x) = \frac{8x^2 - 6x + 1}{3x^2 + 4x - 5}$

$$\lim_{\chi \to 100} \frac{8\chi^2 - 6\chi + 1}{3\chi^2 + 4\chi - 5} = \lim_{\chi \to 100} \frac{8\chi^2 - 6\chi}{\chi^2 + \chi^2} = \lim_{\chi \to 100} \frac{8 - \chi + 1}{3 + \chi - 5}$$

$$= \frac{8-0+0}{3+0-0} = \boxed{\frac{8}{3}}$$

h has horizontal asymptote
$$y = \frac{6}{3}$$

F(x) = $\frac{7x^5 - 5x + 1}{9 - x}$ does not have a horizontal asymptote.

Example 8: Determine $\lim_{x \to \infty} \frac{7x^5 - 5x + 1}{8 - x^2}$ and $\lim_{x \to \infty} \frac{7x^5 - 5x + 1}{8 - x^2}$.

$$\lim_{x \to \infty} \frac{7x^{5} - 5x + 1}{8 - x^{2}} = \lim_{x \to \infty} \frac{7x^{5} - \frac{5x}{x^{2}} + \frac{1}{x^{2}}}{\frac{8}{x^{2}} - \frac{7x^{3}}{x^{2}}} = \lim_{x \to \infty} \frac{7x^{3} - \frac{5}{x} + \frac{1}{x^{2}}}{\frac{8}{x^{2}} - 1}$$

$$\lim_{x \to \infty} \frac{7x^{5} - 5x + 1}{8 - x^{2}} = \lim_{x \to \infty} \frac{7x^{3} - \frac{5}{x} + \frac{1}{x^{2}}}{\frac{8}{x^{2}} - 1}$$

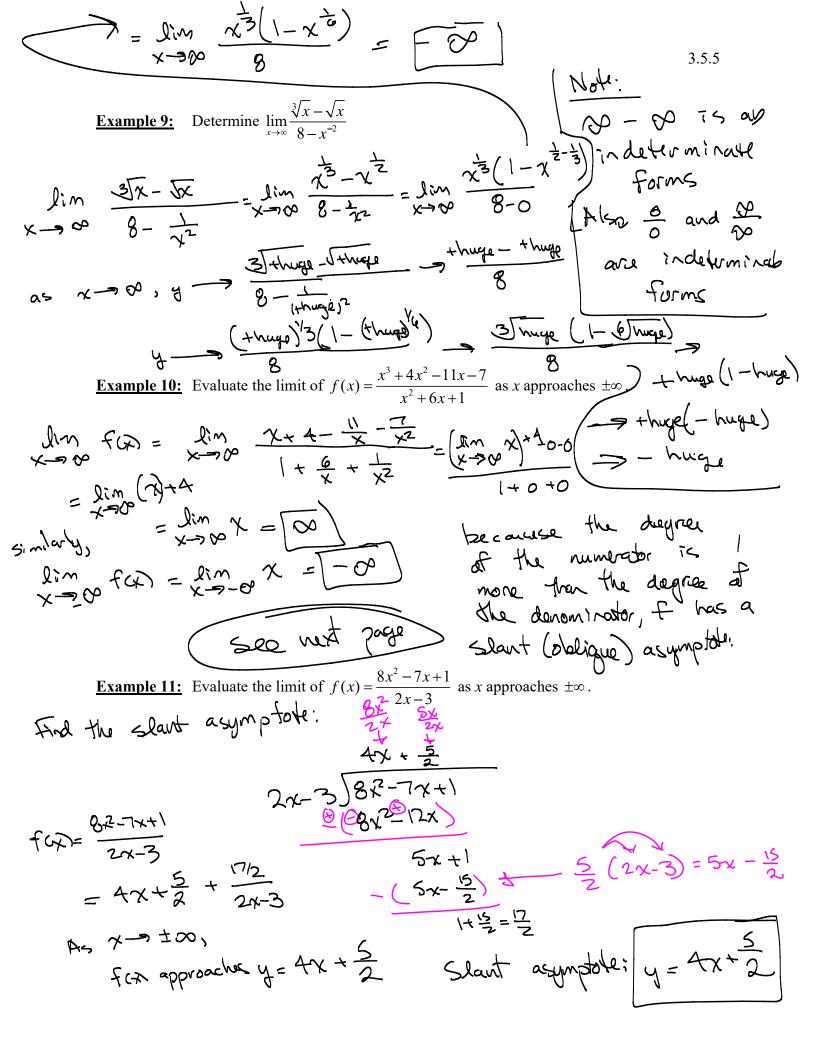
$$\lim_{x \to \infty} \frac{7x^{5} - 5x + 1}{8 - x^{2}} = \lim_{x \to \infty} \frac{7x^{3} - \frac{5}{x} + \frac{1}{x^{2}}}{\frac{8}{x^{2}} - 1}$$

$$=\frac{\lim_{x\to\infty}(7x^3)-0+0}{0-1}=\frac{7\lim_{x\to\infty}(x^3)}{-1\lim_{x\to\infty}(x^3)}=\frac{7\lim_{x\to\infty}(x^3)}{-1\lim_{x\to\infty}(x^3)}=\frac{1}{-1\lim_{x\to\infty}(x^3)$$

as x=>0, y=>-7(+huge) ->- huge $\lim_{x\to-\infty} \frac{7x^{-5x+1}}{8-x^2} = \lim_{x\to-\infty} \left(-7x^3\right) = \left[0\right] = \left(\frac{1}{2}\right)^{-1} = \lim_{x\to-\infty} \left(\frac{1}{2}\right)^{-1} = \lim_{x$ as ~ - - 00, y -> -7 (- huge) -> -7 (- huge) -> + huge Ex. Find horizontal asymptotes (if any) if $y = \frac{\cos x}{x}$.

Horizontal asymptote: y = 0 $x = \infty$ $\left(\frac{\cos \omega}{x}\right) = \lim_{x \to \infty} \left(\frac{1}{x}\right) = 0$

(because _1 < cosx <1)



$$\frac{E \times 10^{\frac{1}{2}}}{5} = \frac{x^{2} + 4x^{2} - 1/x^{-7}}{x^{2} + 6x + 1}$$

$$\frac{A - 2}{x^{2} + 6x + 1}$$

$$\frac$$

Slant asymptotes (y=x-2)

Ex: fix = 8x

Slant asymptotes:

Note:

The graphs of the functions in the previous two examples have *oblique* (slant) asymptotes. This is because the function values (y-values) approached those of a linear function y = mx + b as x approached $\pm \infty$.

Example 12: Evaluate the limit of $f(x) = \frac{2x^3 - x^2 + x}{x - 3}$ as x approaches $\pm \infty$. Does the graph of this function have a slant asymptote?

$$\frac{2x^{2} + 5x + 16}{2x^{3} - x^{2} + x + 0}$$

$$-(2x^{3} - 6x^{2})$$

$$\frac{5x^{2} + x}{5x^{2} + x}$$

$$-(5x^{2} - 15x^{2})$$

$$\frac{16x + 0}{-(16x - 48)}$$

$$\frac{x - 9 \pm 30}{5x^{2} + x}$$

$$\frac{16x + 0}{-(16x - 48)}$$

$$\frac{3x^{2} + 5x + 16}{5x^{2} + x}$$

$$\frac{5x^{2} + x}{-(5x^{2} - 15x^{2})}$$

$$\frac{16x + 0}{-(16x - 48)}$$

$$\frac{3x^{2} + 5x + 16}{5x^{2} + x}$$

$$\frac{$$