Absolute maximum and minimum:

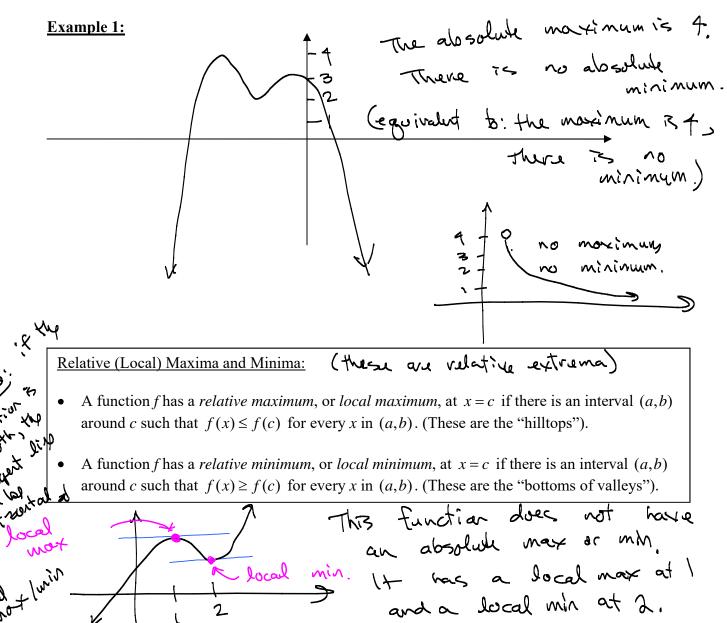
If $f(x) \le f(c)$ for every x in the domain of f, then f(c) is the maximum, or absolute maximum, of f.

If $f(x) \ge f(c)$ for every x in the domain of f, then f(c) is the minimum, or absolute minimum of f. The maximum and minimum values of a function are called the *extreme values* of the function.

(apolal)

In other words,

- The *absolute maximum* is the largest *y*-value on the graph.
- The *absolute minimum* is the smallest y-value on the graph.

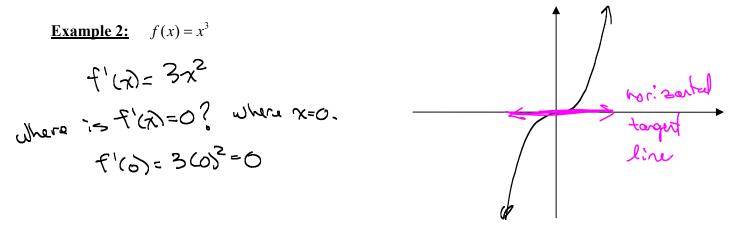


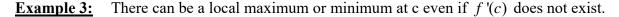
Notice: If the function is differentiable (smooth), then the tangent line at a local minimum or maximum is horizontal.

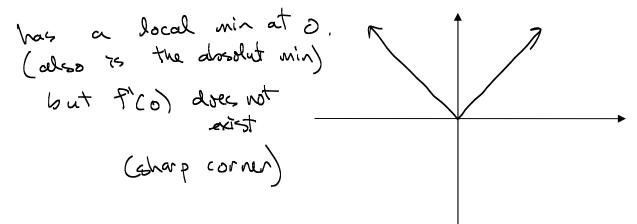
<u>Fermat's Theorem</u>: If f has a local maximum or minimum at c, and if f'(c) exists, then f'(c) = 0.

This means that if f is differentiable at c and has a relative extreme at c, then the tangent line to f at c must be horizontal.

However, we must be careful. The fact that f'(c) = 0 (tangent line is horizontal) does not guarantee that there is a relative minimum or maximum at *c*.







K Critical numbers: ★

Critical Number: A critical number of a function f is a number c in the domain of f such that either f'(c) = 0 or f'(c) does not exist.

Theorem: If f has a local maximum or minimum at c, then c is a critical number of f.

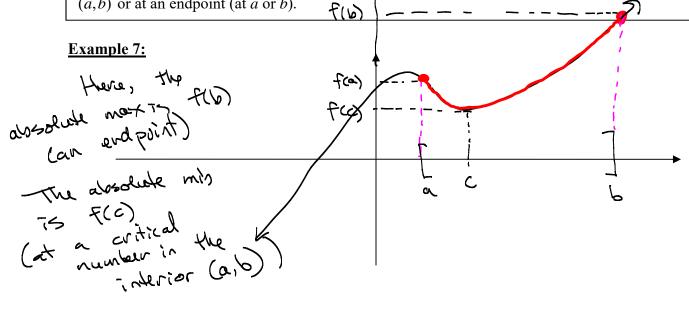
<u>Note</u>: The converse of this theorem is not true. It is possible for f to have a critical number at c, but not to have a local maximum or minimum at c.

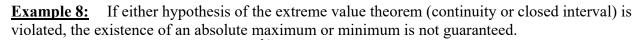
Example 4: Find the critical numbers of $f(x) = x^3 + \frac{17}{2}x^2 - 6x + 4$. f(の= 3米+辺(2水)-6 = 3~2 + 17x - 6 $x = \frac{1}{3}$ Find the critical numbers of $f(x) = x^{2/3}$ $Critical numbers of f(x) = x^{2/3}$ $Critical numbers of f(x) = x^{2/3}$ set f'(x)=0: 0=3x2+17x-6 Example 5: Find the critical numbers of $f(x) = x^{2/3}$ $f(x) = \chi^{2/3} = 3\chi^{2}$ defined on $(-\infty, \infty)$ $f'(x) = \frac{2}{3}\chi^{2} = \frac{2}{3\sqrt{3}}\chi^{2}$ where is f'(x) = 0? f'(x) is never 0 because the numerator connot be 0. where is f'(x) = 0? f'(x) is never 0 because the numerator connot be 0. where is f'(x) = 0? f'(x) = 0 because the numerator connot be 0. where is f'(x) = 0? f'(x) = 0 for f'(x) = 0. where is f'(x) = 0 for f'(x) = 0 for f'(x) = 0. **Example 6:** Find the critical numbers of $f(x) = \frac{x^2}{x-3}$ Volume $x = \frac{x^2}{x-3}$ $f'(x) = \frac{(x-3)\frac{1}{4x}(x^2) - x^2 \frac{1}{4x}(x-3)}{(x-3)^2} = \frac{(x-3)(2x) - x^2(1)}{(x-3)^2} = \frac{2x^2 - (4x - x^2)}{(x-3)^2}$ $=\frac{\chi^2-6\chi}{(\chi-\chi)^2}=\frac{\chi(\chi-6)}{(\chi-\chi)^2}$ where is f'(x)=0: at 0 and 6. set f'(x)=0: 0 = x(x-0) where is P'(x) undefined? when x=3 $0 = \chi(\chi - 6)$ 50 3 in the domain of f? No 50 3 is not a critical number. x=0, x=6 O and 6 are critical numbers

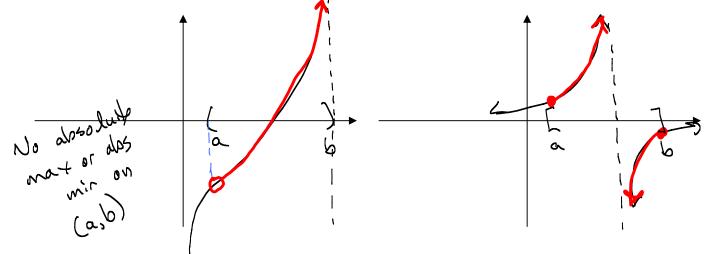
Absolute extrema on a closed interval:

Extreme Value Theorem: If f is continuous on a closed interval [a,b], then f has both an absolute maximum and an absolute minimum on [a,b].

Note: The absolute maximum and the absolute minimum must occur at either a critical value in (a,b) or at an endpoint (at a or b).







Process for Finding the Absolute Extrema of a Continuous Function on a Closed Interval:

- 1. Find the critical values in (a,b).
- 2. Compute the value of f at each critical value in (a,b) and also compute f(a) and f(b).
- 3. The absolute maximum is the largest of these *y*-values and the absolute minimum is the smallest of these *y*-values.

Example 9: Find the absolute extrema for
$$f(x) = x^2 + 2$$
 on the interval $[-2,3]$.

Find critical values:
$$f'(x) = 2x$$

set $f'(x) = 0$; $2x=6$
 $x=0$ is this in $[-2, 3]$? (less
 $f(0) = 0^{2} + 2 = 4$ recalled
 $f(3) = 3^{2} + 2 = (1 + larget)$
 $f(3) = 3^{2} + 2 = (1 + larget)$
Example 10: Find the extreme values of $g(x) = \frac{1}{2}x^{2} - \frac{2}{3}x^{2} - 2x^{2} + 3$ on the interval $[-2,1]$.
 g is continuous, domain $(-80, 80)$
 $g'(x) = \frac{1}{2}(4\pi^{3}) - \frac{2}{3}(3\pi^{2}) - 4\pi$
 $= 1\pi^{3} - 2\pi^{2} - 4\pi$ $= 2\pi/(\pi^{2} - \pi - 2)$
 $= 2\pi/(\pi^{2} - 1)(\pi^{2} + 1)$
 $g(x) = \frac{1}{2}(0)^{2} - \frac{1}{2}(0)^{2} + 3 = 3$
 $g(x) = \frac{1}{2}(0)^{2} - \frac{1}{2}(0)^{2} + 3 = 3$
 $g(x) = \frac{1}{2}(0)^{2} - \frac{1}{2}(0)^{2} + 2(-1)^{2} + 3 = -2 + 3 = \frac{2}{6} + \frac{4}{6} + \frac{6}{6} = \frac{12}{6} + 2\frac{1}{6}$
 $g(x) = \frac{1}{2}(1)^{2} - \frac{1}{2}(-2)^{2}(2)^{2} + 3 = -2 + 3 = \frac{2}{6} - \frac{4}{6} + \frac{6}{6} = \frac{5}{6}$
 $g(x) = \frac{1}{2}(1)^{2} - \frac{1}{2}(-2)^{2}(-2)^{2} + 3 = -2 + 3 = \frac{2}{6} - \frac{4}{6} + \frac{6}{6} = \frac{5}{6}$
 $f(x) = \frac{1}{2}(1)^{2} - \frac{1}{2}(-2)^{2}(-2)^{2} + 3 = -2 + 3 = \frac{2}{6} - \frac{4}{6} + \frac{6}{6} = \frac{5}{6}$
 $f(x) = \frac{1}{2}(1)^{2} - \frac{1}{2}(-3)^{2} - 2(-3)^{2} + 3 = -2 + 3 = \frac{2}{6} - \frac{4}{6} + \frac{6}{6} = \frac{5}{6}$
 $f(x) = \frac{1}{2}(1)^{2} - \frac{1}{2}(-3)^{2} - 2(-3)^{2} + 3 = -2 - \frac{2}{6} - \frac{4}{6} + \frac{6}{6} = \frac{5}{6}$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$