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4.4: The Fundamental Theorem of Calculus

Evaluating the area under a curve by calculating the areas of rectangles, adding them up, and
letting taking the limit as n — oo is okay in theory but is tedious at best and not very practical.

Fortunately, there is a theorem that makes calculating the area under the curve (definite integral)
much easier.

The Fundamental Theorem of Calculus:

Let f be continuous on the interval [a,b]. Then,
[ f0dx=F(b)-F(a)

where F is any antiderivative of f ; in other words, where F'(x) = f(X).

Notation: We’ll use this notation when evaluating definite integrals.
b
L f (x)dx=F(x)[. = F(b)-F(a)

Example 1: Find the area under the graph of f(X)= X between 0 and 3.
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4.4.2
Notice that the constant C disappeared when we evaluated the definite integral. This will always
happen.

[ f00dx=F (0 +cf =(F(b)+c)~(F(@)+c) = F(b) +c-F(a)-c=F(b)-F(a)

So from now on, we’ll omit the “+C” when evaluating definite integrals.

Example 2: Find the area under the graph of f(X)=4x>+1 over the interval [0,2]. (Compare
with our approximation in Section 4.2, Example 5).
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Example 3: Evaluate 3x% =X+ 4)dXx.
Example 3: [« ) \o L
- gl ne



443

Example 4: Evaluate J‘: (4% +cos X)dx .

Example 5: Evaluate f(%) dt.

Example 6: Evaluate Jj%du. Vk‘{k an ‘,N\rfdel/ ‘“\Lw(\md
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4.4.4
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For now, if f has an infinite discontinuity anywhere in [a,b], assume that j f (x) dx does not
a

exist. Some of these integrals do exist....you will learn how to handle such integrals in Calculus
2.

S

}\r //T he Fundamental Theorem of Calculus, Part II:

% /| Let f be continuous on the interval [a,b]. Then the function g defined by

g(x)=_[xf(t)dt, a<x<b
\\ a
\ ¢/ is continuous on [a,b] and differentiable on (a,b), and g'(x) = f(x).
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Example 1: Find the derivative of the function %{) = L % dt.
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Example 2: Find di [ Siz”\/t“+2 dt .
Example 2: i
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4.4.5

The mean (average) value of a function:

On the interval [a,b], a continuous function f(x) will have an average “height” ¢ such that the
rectangle with width b—a and height ¢ will have the same area as the area under the curve over
[a,b]. This c is the average value of the function f over [a,b].
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Mean Value Theorem for Integrals:

If f is continuous on [a,b] , then ther\il exi)‘sts a nymber ¢ in [a,b] such that
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jb f(x)dx= f(c)(b-a).
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Thisaumbere is called the average value of the function f on the interval [a,b].

The average value of a continuous function f on the interval [a,b] is given by

1
f —_ f X)dx .
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Example 8: Find the average Value of the function f(x)=4x’-x’ over the interval [-3,2].
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Example 9: Det%rmine the average value of f(X)=sin X on the interval [0, 7].
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