5.1.1

5.1: The Natural Logarithmic Function: Differentiation

An algebraic approach to logarithms:

Definition: log, X =y is equivalent to b’ = x.

The functions f(x)=b" and g(x) =log, x are inverses of each other.

b is called the base of the logarithm.

The logarithm of base e is called the natural logarithm, which is abbreviated “In”.

The natural logarithm:

Inx=log, X.

Therefore InX =y is equivalent to €’ = X and the functions f(x)=e" and g(x)=InX are

inverses of each other.

A calculus approach to the natural logarithm:

The natural logarithm function is defined as % A &-E
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1nx=jlx%dt, Xx>0.
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For x>1, Inx can be interpreted as the area under the graph of y =% fromt=1to t=x.
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Note: The integral is not defined for x <0. ( N Ffd?k!‘ t ’\'\% \>
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For x=1, 1nx=jll%dt=0. Sy QV\CD =0

For x <1, 1nx=Jlx%dt:—jl%dt<0.

Recall: The Fundamental Theorem of Calculus, Part II:

Let f be continuous on the interval [a,b]. Then the function g defined by
g(x)=LXf(t)dt, a<x<b

is continuous on [a,b] and differentiable on (a,b), and g'(x) = f(X).
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Apply the Fundamental Theorem of Calculus to the function f(t)= % o D= I 8 K
i( J' x1 dt) _1
dx\’' t X

This means that i(ln X) = 1 .
dx X

The Derivative of the Natural Logarithmic Function
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Laws of Logarithms:

If X and y are positive numbers and r is a rational number, then:

l. In(xy)=Inx+1Iny

2. ln(£)=lnx—lny
y

Note: This also gives us In [lj =—InXx.
X

3. 1n(xf)=r1nx
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It can be shown that limIn X = o and that lim =—o0 .

X—>0 x—>0"
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Example 1: Expand In (MJ
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The graph of y=Inx:

E—
For X>O,%=l>0 so Y =Inx is increasing on (0,0). \ ‘ X
X X
d’y 1 .
For x>0, e =——<0so y=InX is concave down on (0,%).
X X

Because In1=0 and y=InX is increasing to arbitrarily large values (lim Inx = oo) , the

X—>o0

Intermediate Value Theorem guarantees that there is a number X such that In x =1. That number

1s called e.

e~ 2.71828182845904523536

(e is in irrational number—it cannot be written as a decimal that ends or repeats.)



Example 2: Find g—y for y =In(2x’ +3X).
X
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Note: %(lnu)—&% or, written another way, (;j (ln g(x )) '(( ))

Example 3: Determine di(ln(cos X))
X

Example 4: Find the derivative of f(X)= IL
n X

Example 5: Find the derivative of f(x)=X’InX.

Example 6: Find the derivative of y = IZ—X .
X
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Example 7: Find the derivative of g(t) = In(7t).

Example 8: Determine the derivative of f(X)= In 6X
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Logarithmic differentiation:

To differentiate y = f(X):

1. Take the natural logarithm of both sides.
2. Use the laws of logarithms to expand.

3. Differentiate implicitly with respect to X.

4. Solve for ﬂ
dx



\

Example 9: Use logarithmic differentiation to find the derivative of
y=(xX>+2)°(2x+1)’ (6x-1).
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Example 10: Find y' for y:u-l—?%nx‘
X
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