3.4: The Five-Number Summary and Boxplots

Percentiles:

The <u>kth percentile</u>, denoted P_k , of a data set is the value such that k% of the data points are less than or equal to that value. The <u>percentile rank</u> of a score is the percent of scores equal to or below that score.

For example, a value is known as the 85th percentile if 85% of the data points are <u>less than or</u> equal to that score.

Example 1: Here are the 50 randomly generated scores from Example 4 in Section 3.3. Estimate the 70th percentile, 80th percentile and the 90th percentile.

	37.48295	53.07996	54.94143	57.29676	60.95421	63.16013	66.48368	
	44.16628	53.20456	55.31494	57.37955	61.43636	63.3329	67.79641	d
	47.40146	54.25092	55.90412	58.99277	61.91373	63.39574	67.85567	20th reventile
	50.54246	54.41687	56.48669	59.10063	62.14886	63.61741	68.12883	\
	51.77209	54.42467	56.64306	59.74812	62.52829	63.79043	68.23415	the the
	52.06366	54.87849	56.84053	60.00459	62.58302	63.93691	70.72309	_ 80 percentile
		54.91449				66.44211	/3.3014	U
					7010		87.41814	
_	C /		0 10 (0	3-5	Coper	with		
\0%	すら	0 75	0.10C	(0.	,	L	4	ı '
	of 5 count	\mathscr{H}	5 \	lalues	For	the s	90'' ser	centile, another
وک	Cox			مرکب		L'	, 	-
		6	o tor	&O	بعوه.	ر ماالک	۵۱ ۲.	
					1			

Quartiles:

Quartiles are values that divide a data set into fourths. The 25th percentile, 50th percentile, and 75th percentile are often referred to as the first quartiles, second quartile, and third quartile.

Method 1 (Tukey's Method): Used in our book:

The second quartile, Q_2 , is the median M of the data set.

The first quartile, Q_1 , is the median of the *bottom half of the data set.

The third quartile, Q_3 , is the median of the *top half of the data set.

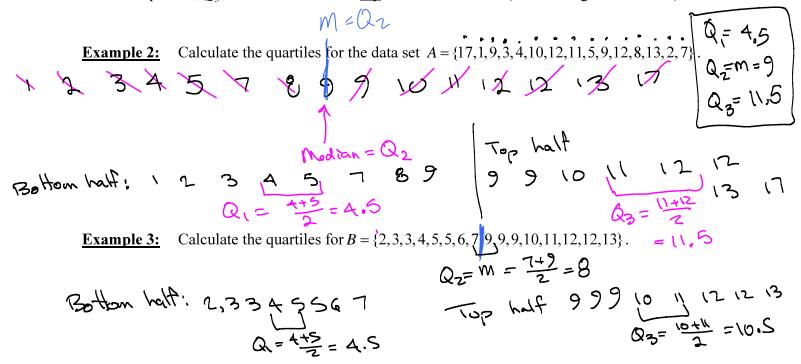
* If the data set has an odd number of data points, the median is included in both halves.

Method 2 (NOT Used in our book):

The second quartile, Q_2 , is the median M of the data set.

The first quartile, Q_1 , is the median of the <u>bottom</u> half of the data set (the values less than M).

The third quartile, Q_3 , is the median of the <u>top</u> half of the data set (the values greater than M).



Example 4: Calculate the quartiles for $C = \{1, 2, 3, 8, 11, 15, 16, 19, 27, 29, 31, 34, 40, 51, 52, 52, 53\}$.

Example 5: Calculate the quartiles for $D = \{1, 1, 3, 5, 10, 10, 15, 15, 19, 20, 22, 24, 24, 30, 31, 32, 32, 38\}$.

Definition: The *interquartile range*, denoted *IQR*, is the difference between the first and third quartiles.

$$IQR = Q_3 - Q_1$$

The *IOR* is the range of the middle 50% of the data set. The interquartile range is a measure of dispersion (how spread out the data are); the standard deviation, variance, and range of the data set are also measures of dispersion. The IQR is resistant to extreme values (outliers); the range and standard deviation are not resistant to extreme values.

An *outlier* is an extreme value (extremely low or extremely high, relative to other values in the data set).

One common definition for an outlier: A data point is considered an outlier (or a potential outlier) if it lies beyond these fences:

Lower fence (lower limit) =
$$Q_1 - 1.5(IQR)$$

Upper fence (upper limit) = $Q_3 + 1.5(IQR)$

So, a data point x is an outlier if $x < Q_1 - 1.5(IQR)$ or if $x > Q_3 + 1.5(IQR)$.

a.
$$A = \{2, 5, 7, 10, 12, 14, 30\}$$

Example 6: Using the definition above, find any outliers in these data sets.

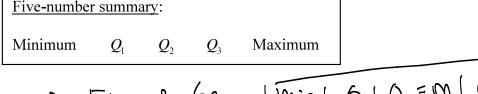
a. $A = \{2,5,7,10,12,14,30\}$ $A = \{2,5,7,10,12,14$

Example 7: Does the randomly generated data set in Example 1 contain any outliers?

Some researchers and statisticians consider a data point to be an extreme outlier if it lies beyond the two <u>outer fences</u> $Q_1 - 3(IQR)$ and $Q_3 + 3(IQR)$. Does the Example 1 data set contain extreme outliers?

The five-number summary:

We can get a fairly useful and descriptive picture of any data set from just 5 numbers: the minimum (smallest value), first quartile, second quartile (median), third quartile, and maximum (largest value).



Five-number

Summery for Example 60

Boxplots:

1	Min	QU	Q2=M	Q3	Max	.\
1	2	(a	(0	(3)	30	_

A boxplot, or box-and-whisker plot, visually depicts these five numbers.

How to make a boxplot:

- 1. Determine the minimum, quartiles, and maximum of the data set.
- 2. Set up a horizontal scale, and draw a box that has Q_1 and Q_3 for endpoints, and a vertical line at Q_2 (the median). The length of the box is $IQR = Q_3 Q_1$.
- 3. Calculate the upper and lower fences, and mark them on the graph:

Lower fence =
$$Q_1 - 1.5(IQR)$$

Upper fence = $Q_3 + 1.5(IQR)$

- 4. Draw a line from Q_1 to the smallest data point that is larger than the lower fence. Draw a line from Q_3 to the largest data point that is smaller than the upper fence.
- 5. Use an asterisk to mark any data values that lie outside the fences.

Example 8: Construct a box plot for the data set.

3, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 11

Example 9: Construct a box plot for the data set.

20, 1, 5, 3, 7, 14, 12, 10, 5, 9, 12, 4, 6, 13, 2, 8

4556789101212131425 $Q = \frac{4+5}{2}$ $Q = m = \frac{7+8}{2} = 7.5$ $Q_3 = \frac{12+12}{2} = 12$ $Q_1 = 4.5$ $Q_2 = M = 7.5$ $Q_3 = 12$ $Q_3 = 12$ $Q_4 = 25$ $Q_5 = 25$ $Q_6 = 25$ Upper fence: Q3 + 1.5 (IQR)
= 12 + 1.5 (IQR)
= 12 + 1.5 (IQR)
= 23.25

so 25 is an autilier

