4.3: Some Rules of Probability

Example 1: Need-based financial aid for college students can take the form of grants (do not need to be repaid) or loans (must be repaid). Consider a group of 70 students in which 30 students received grants, 35 received loans, and 13 received both. How many of these students received need-based financial aid?

<u>Notation</u>: n(A) means the number of elements in set A.

Probability of unions and intersections:

Probability of a Union of Two Events:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

If the two events are mutually exclusive (disjoint):

 $P(A \cup B) = P(A) + P(B)$

Example 2: Assume that an equally likely sample space is described by the Venn diagram below.

Example 1: Suppose that the probability of someone voting for a certain candidate is 0.46. What is the probability of not voting for the candidate?

$$P(E) = 0.46$$

 $P(E^{c}) = 1 - 0.46 = 0.54$

Example 2: Consider the data below, from the Congressional Research Service. https://fas.org/sgp/crs/misc/RS20811.pdf

Income Class	# of Households (in thousands)	% of Households
All Households	122,459	100.0
ess than \$5,000	4,204	3.4 3.9 5.7
\$5,000 to \$9,999	4,729	3.9
\$10,000 to \$14,999	6,982	5.7
\$15,000 to \$19,999	7,157	5.8
20,000 to \$24,999	7,131	5.5
\$25,000 to \$29,999	6,740	5.4
\$30,000 to \$34,999	6,354	5.2
35,000 to \$39,999	5,832	4.8
\$40,000 to \$44,999	5,547	4.5
\$45,000 to \$49,999	5,254	4.4
50,000 to \$59,999	9,358	7.6
\$60,000 to \$69,999	8,305	6.8
\$70,000 to \$79,999	7,170	5.9
\$80,000 to \$89,999	5,969	4.9
\$90,000 to \$99,999	4,901	4.0
\$100,000 to \$124,999	9,490	7.7
\$125,000 to \$149,999	5,759	4.7
\$150,000 to \$199,999	6,116	5.0
200,000 to \$249,999	2,549	2.1
250,000 and above	2,911	2.4
Median Income	\$51.	017
Mean Income	\$71,	274

Table 1. Distribution of Household Money Income by Selected Income Class, 2012

Source: U.S. Census Bureau, 2012 Annual Social and Economic Supplement to the Current Population Survey.

a) What is the probability that a randomly selected household has an income of \$100,000 or more? $P(R) = 0.077 \pm 0.047 \pm 0.05 \pm 0.021 \pm 0.024$

 $= \boxed{0.2.9}$ b) What is the probability that a randomly selected household has an income below \$40,000?

c) What is the probability that a randomly selected household has an income below \$40,000?

d) What is the probability that a randomly selected household has an income below \$250,000?

$$P(7, 11250K) = 0.024$$

$$P(E^{\circ}) = (-0.024 = 0.976]$$
e) What is the probability that a randomly selected household has an income of \$20,000 or more?

$$V_{22} + V_{2} \quad complement? \quad E_{2} = 120K, \quad E^{\circ} : < 120K$$

$$P(E^{\circ}) = 0.034 + 0.039 + 0.057 + 0.058 = 0.188$$
f) Approximate the median household income.

$$P(E^{\circ}) = 1 - 0.188$$

$$= 0.812$$

	2 ¥	€ •	5 ₩ ₩	5 * * * *	€ ∀ ¥ ¥ ¥ ▲ ▲ ∳						
• •	2 ◆ ◆ ₹	3 ◆ ◆ ◆ ē	έ ♦ ♦ ♦ ♦;	5 + + + + + s	5 ↔ ↔ ↔ ↔ ♦ ♦ 9	!		9 • • • • • • • • •			
↓ ↓ ↓ 1	2. ♣ ♣ [‡]	₹ * *	4	5	* * * * * *	¹ + + + + + + + + [†]	**** **** *	9* + + * * * * * * * * * *	°*** *** **** ****		
↓ ★ ↓	² ★ ▼ ;	3 ★ ★ ¥ €	4 ↔ ↔ ♥ ♥;	5 ★ ★ ★ ¥ ¥;	• * * * * * *	!	** * * * * * *	9 ↔ ↔			

Consider a standard deck of 52 cards. Example 3:

a) What is the probability that a randomly selected card is a spade or a heart? $P(Spade U Heart) = P(Spade) + P(Heart) - P(Sp \cap Hrt)$ $= \frac{13}{52} + \frac{13}{52} - 0 = \frac{26}{52} = \frac{1}{2}$

b) What is the probability that a randomly selected card is a spade or an ace? $P(S_{P} \cup A_{G}) = \frac{16}{52} \text{ or } P(S_{P}) + P(A_{G}) - P(S_{P} \cap A_{G})$ $\frac{13}{52} + \frac{4}{52} - \frac{1}{52} = \frac{16}{52}$

c) What is the probability that a randomly selected card is not a black face card?