5.2: The Mean and Standard Deviation of a Discrete Random Variable

Mean of a discrete random variable:

The Mean (Expected value) of a Discrete Random Variable:

Suppose that a random variable *X* can take on the *n* values $x_1, x_2, ..., x_n$. Suppose the associated probabilities are $p_1, p_2, ..., p_n$. Then the mean of *X* is

 $\mu = x_1 p_1 + x_2 p_2 + \dots + x_n p_n.$

Suppose an experiment is repeated many times, and the values of *X* are recorded and then averaged. As the number of repetitions increases, the average value of *X* will become closer and closer to μ . For that reason, the mean is called the *expected value* of *X*.

Example 1: A probability distribution is given by the table below. Find the mean (the expected value of X).

Example 2: Suppose that an organization sells 1000 raffle tickets for \$1 each. One ticket is for a gift basket worth \$200, and three tickets are for \$50 gift certificates to a restaurant. Find the expected net winnings for a person who buys one ticket.

$$X = net winnings for (Ticked)$$

$$\frac{V}{1000} = \frac{V}{1000} = \frac{V}{100}$$

Example 3: Suppose the yearly premium for a car insurance policy is \$2300 for a customer in a certain category. Statisticians for the insurance company have determined that a person in this category has a 0.007 probability of having an accident that costs the insurance company \$100,000 and a 0.015 probability of having an accident that costs the insurance company \$30,000. What is the expected value of the insurance policy to the customer? To the insurance company?

Standard deviation of a discrete random variable:

The Standard Deviation of a Discrete Random Variable:

Suppose that a random variable X can take on the *n* values $x_1, x_2, ..., x_n$. Suppose the associated probabilities are $p_1, p_2, ..., p_n$. Then the mean of X is standard is deviction

$$\sigma = \sqrt{(x_1 - \mu)^2 p_1 + (x_2 - \mu)^2 p_2 + \dots + (x_n - \mu)^2 p_n}$$

= $\sqrt{\sum_{i=1}^n (x_i - \mu)^2 p_i}$
So variance of X is $\sigma^2 = \sum_{i=1}^n (x_i - \mu)^2 p_i$

x	P(X = x) [sometimes written $P(x)$]	XP
0	0.11	D
1	0.32	0,32
2	0.43	0,32 0,86
3	0.10	0.3
4	0.04	0.16

Example 4:	Calculate the mean and	l standard deviation	of the pi	robability distribution.

Example 5: Use the frequencies to construct a probability distribution for the random variable X, which represents the number of games bowled by customers at a bowling alley. Calculate the mean and standard deviation of X.

Number of Games	Frequency	
1	37	
2	45	
3	29	
4	12	
5	4	