3.2: Compound Interest

If at the end of a payment period, the interest due is reinvested at the same rate, then the interest as well as the principal will earn interest. This is called *compound interest*. The interest is paid into the account at the end of each compounding period.

Example 1: Suppose you invest \$1000 compounded quarterly at an annual interest rate of 8%.

How much money will you have after one year?

quarterly => 4 times per year

 $P = $1000, r = 0.08, t = \frac{1}{4} = 0.26$ A = P + Prt = P(1 + rt) = \$1000(1 + 0.084) = \$1000(1.02) = \$1020

 $2^{nd} \frac{1}{1000} = 1000 (1.02) = 1000 (1.$

3rd Qtr: A = \$(000 (1.02) (1.02)

Compound Interest:

$$A = P(1+i)^{n}$$

$$= P\left(1 + \frac{r}{m}\right)^{n}$$

$$= P\left(1 + \frac{r}{m}\right)^{mt}$$

$$= P\left(1 + \frac{r}{m}\right)^{mt}$$

$$A = P\left(1 + \frac{r}{m}\right)^{mt}$$

where

 $i = \frac{r}{Qm}$ is the interest rate per compounding period

r annual interest rate

m = number of compounding periods per year

n =total number of compounding periods

P = principal (present value)

A = amount (future value) at the end of n compounding periods.

3.2.2

what is the future value of \$1000 after 8 years at 6% compounded monthly?

$$A = P(1+i)$$

$$A = \sqrt[3]{2}$$

How much should I invest now at 4% interest compounded monthly in order to have \$10,000 in 6 years?

$$A = P(H + \frac{1}{12})^{n}$$

$$R = \frac{1}{12}$$

$$R = \frac{1}$$

Example 4: You decide to invest some money so that you will have \$1,000,000 on your 75th birthday. At 8% compounded quarterly, how much should you invest on your 25th birthday?

of third y. At 8% compounded quarterly, now indich should you invest on your 23 birthday?

$$A = P(1 + \frac{\Gamma}{m})^{n}$$

$$A = F(1 + \frac{\Gamma}{m})^{n}$$

$$A = \frac{1}{m} = 4(50) = 200$$

Example 5: How long will it take \$5,000 to grow to \$7,000 if it is invested at 8% compounded

Take In (notural dog) of both sides: In (7/5) = In (1+ 0.08)2t

$$\frac{\ln(7/5)}{\ln(1+0.08)} = t$$

$$t \approx 4.21999$$

$$t \approx 4.22 \text{ years}$$

How long will it take money to double if it is invested at 7.5% compounded monthly?

or, let
$$A = 2P$$
 $A = P(1+\frac{r}{m})^{n}$
 $2P = P(1+\frac{r}{m})^{n}$
 $2P$

n= mt = 12+

Continuous compound interest:

In calculus, a fundamental topic is the *limit*, or limiting value of a function. If we allow the number of compounding periods per year to increase toward infinity, the amount A approaches the limiting value $A = Pe^{rt}$. The number e is a constant, $e \approx 2.71828$. The number e is irrational—it cannot be written as a fraction of integers, or as a decimal that ends or repeats.

e can be defined as the limiting value of $\left(1+\frac{1}{x}\right)^x$ as x approaches ∞ .

Start with the compound interest formula:

$$A = P\left(1 + \frac{r}{m}\right)^{mt}$$

Substitute $x = \frac{m}{r}$ and then rearrange/simplify:

$$A = P \left[\left(1 + \frac{1}{x} \right)^x \right]^{rt}$$

As $x \to \infty$, $\left(1 + \frac{1}{x}\right)^x \to e$. This gives us the formula for continuous compound interest.

Continuous Compound Interest:

If principal P is compounded continuously at the annual interest rate r, then the amount at the end of t years is

$$A = Pe^{rt}$$
. $A = Pe^{rt}$

<u>Example 7:</u> How much must be invested now to have \$60,000 available in 10 years, if it is invested at 7% compounded (a) monthly? (b) continuously?

(a)
$$k = P(1 + \frac{1}{m})^n$$
 $k = \frac{1}{60000}$
 $R = \frac{1}{12}$
 $R = \frac{1}{12}$

Example 8: How long will it take \$5,000 to grow to \$7,000 if it is invested at 8% compounded continuously?

$$A = Pe^{rt}$$

$$7000 = 5000e$$

$$\frac{7000}{5000} = e^{0.09t}$$

$$\frac{7}{5} = e^{0.09t}$$

$$\ln(\frac{7}{3}) = \ln(e^{0.09t})$$

$$\ln(\frac{7}{3}) = 0.09t \implies t = 4.2059$$

$$\frac{1}{5} \times 4.21 \text{ years}$$

Effective rates:

The effective rate, sometimes called the *annual percentage yield*, converts a compound interest rate to an equivalent simple interest rate. This allows us to compare interest rates which have different compounding periods.

Annual Percentage Yield (APY):

The annual percentage yield (APY), or effective rate, is given by

$$APY = r_e = \left(1 + \frac{r}{m}\right)^m - 1,$$

where

r = annual interest rate

m = number of compounding periods per year.

For interest compounded continuously, the APY is

$$APY = r_e = e^r - 1.$$

Example 9: What is the annual percentage yield for money invested at 6% compounded quarterly?

$$APY = r_e = (4m) - 1$$

$$= (40.06) - 1$$

$$= (40.06) - 1$$

$$= 1.06126 - 1 = 0.06136$$

$$= (6.1367)$$

Example 10: Which investment is better, Note A at 9% compounded monthly or Note B at 9.2% compounded semiannually?

Calculate the APY for each. The better investment will have the higher APY, or ce ceffective vale).

See video it needed.